kakoune/src/utils.hh

255 lines
5.7 KiB
C++
Raw Normal View History

#ifndef utils_hh_INCLUDED
#define utils_hh_INCLUDED
#include "assert.hh"
2013-04-09 20:05:40 +02:00
#include "exception.hh"
2011-09-09 21:24:18 +02:00
2011-10-17 23:05:22 +02:00
#include <algorithm>
2013-04-09 20:05:40 +02:00
#include <memory>
#include <vector>
#include <unordered_set>
namespace Kakoune
{
// *** Singleton ***
//
// Singleton helper class, every singleton type T should inherit
// from Singleton<T> to provide a consistent interface.
template<typename T>
class Singleton
{
public:
Singleton(const Singleton&) = delete;
Singleton& operator=(const Singleton&) = delete;
static T& instance()
{
kak_assert (ms_instance);
return *ms_instance;
}
static bool has_instance()
{
return ms_instance != nullptr;
}
protected:
Singleton()
{
kak_assert(not ms_instance);
ms_instance = static_cast<T*>(this);
}
~Singleton()
{
kak_assert(ms_instance == this);
ms_instance = nullptr;
}
private:
static T* ms_instance;
};
template<typename T>
T* Singleton<T>::ms_instance = nullptr;
// *** Containers helpers ***
template<typename Container>
struct ReversedContainer
{
ReversedContainer(Container& container) : container(container) {}
Container& container;
decltype(container.rbegin()) begin() { return container.rbegin(); }
decltype(container.rend()) end() { return container.rend(); }
};
template<typename Container>
auto begin(ReversedContainer<Container>& c) -> decltype(c.begin())
{
return c.begin();
}
template<typename Container>
auto end(ReversedContainer<Container>& c) -> decltype(c.end())
{
return c.end();
}
template<typename Container>
ReversedContainer<Container> reversed(Container&& container)
{
return ReversedContainer<Container>(container);
}
template<typename Container, typename T>
auto find(Container&& container, const T& value) -> decltype(begin(container))
{
return std::find(begin(container), end(container), value);
}
template<typename Container, typename T>
auto find_if(Container&& container, T op) -> decltype(begin(container))
{
return std::find_if(begin(container), end(container), op);
}
2011-10-17 23:05:22 +02:00
template<typename Container, typename T>
bool contains(Container&& container, const T& value)
2011-10-17 23:05:22 +02:00
{
return find(container, value) != end(container);
2011-10-17 23:05:22 +02:00
}
template<typename T1, typename T2>
bool contains(const std::unordered_set<T1>& container, const T2& value)
{
return container.find(value) != container.end();
}
2013-12-14 15:49:10 +01:00
template<typename Iterator, typename EndIterator, typename T>
void skip_while(Iterator& it, const EndIterator& end, T condition)
{
while (it != end and condition(*it))
++it;
}
template<typename Iterator, typename BeginIterator, typename T>
void skip_while_reverse(Iterator& it, const BeginIterator& begin, T condition)
{
while (it != begin and condition(*it))
--it;
}
// *** On scope end ***
//
// on_scope_end provides a way to register some code to be
// executed when current scope closes.
//
// usage:
// auto cleaner = on_scope_end([]() { ... });
//
// This permits to cleanup c-style resources without implementing
// a wrapping class
template<typename T>
class OnScopeEnd
{
public:
OnScopeEnd(T func) : m_func(std::move(func)) {}
~OnScopeEnd() { m_func(); }
private:
T m_func;
};
template<typename T>
OnScopeEnd<T> on_scope_end(T t)
{
return OnScopeEnd<T>(t);
}
// *** Misc helper functions ***
template<typename T>
bool operator== (const std::unique_ptr<T>& lhs, T* rhs)
{
return lhs.get() == rhs;
}
inline String escape(const String& name)
{
static Regex ex{"([ \\t;])"};
return boost::regex_replace(name, ex, R"(\\\1)");
}
2012-10-02 14:08:09 +02:00
template<typename T>
const T& clamp(const T& val, const T& min, const T& max)
{
return (val < min ? min : (val > max ? max : val));
}
2013-04-23 19:08:44 +02:00
template<typename T>
bool is_in_range(const T& val, const T& min, const T& max)
{
return min <= val and val <= max;
}
// *** AutoRegister: RAII handling of value semantics registering classes ***
template<typename EffectiveType, typename RegisterFuncs, typename Registry>
class AutoRegister
{
public:
AutoRegister(Registry& registry)
: m_registry(&registry)
{
RegisterFuncs::insert(*m_registry, effective_this());
}
AutoRegister(const AutoRegister& other)
: m_registry(other.m_registry)
{
RegisterFuncs::insert(*m_registry, effective_this());
}
AutoRegister(AutoRegister&& other)
: m_registry(other.m_registry)
{
RegisterFuncs::insert(*m_registry, effective_this());
}
~AutoRegister()
{
RegisterFuncs::remove(*m_registry, effective_this());
}
AutoRegister& operator=(const AutoRegister& other)
{
if (m_registry != other.m_registry)
{
RegisterFuncs::remove(*m_registry, effective_this());
m_registry = other.m_registry;
RegisterFuncs::insert(*m_registry, effective_this());
}
return *this;
}
AutoRegister& operator=(AutoRegister&& other)
{
if (m_registry != other.m_registry)
{
RegisterFuncs::remove(*m_registry, effective_this());
m_registry = other.m_registry;
RegisterFuncs::insert(*m_registry, effective_this());
}
return *this;
}
Registry& registry() const { return *m_registry; }
private:
EffectiveType& effective_this() { return static_cast<EffectiveType&>(*this); }
Registry* m_registry;
};
}
// std::pair hashing
namespace std
{
template<typename T1, typename T2>
struct hash<std::pair<T1,T2>>
{
size_t operator()(const std::pair<T1,T2>& val) const
{
size_t seed = std::hash<T2>()(val.second);
return seed ^ (std::hash<T1>()(val.first) + 0x9e3779b9 +
(seed << 6) + (seed >> 2));
}
};
}
#endif // utils_hh_INCLUDED