home/src/regex_impl.cc
2017-11-01 14:05:14 +08:00

613 lines
18 KiB
C++

#include "regex_impl.hh"
#include "vector.hh"
#include "unit_tests.hh"
#include "string.hh"
#include "unicode.hh"
#include "exception.hh"
#include "array_view.hh"
namespace Kakoune
{
namespace RegexProgram
{
enum Op : char
{
Match,
Literal,
AnyChar,
Jump,
Split,
LineStart,
LineEnd,
WordBoundary,
NotWordBoundary,
SubjectBegin,
SubjectEnd,
};
using Offset = size_t;
}
namespace RegexCompiler
{
struct Quantifier
{
enum Type
{
One,
Optional,
RepeatZeroOrMore,
RepeatOneOrMore,
RepeatMinMax,
};
Type type = One;
int min = -1, max = -1;
bool allows_none() const
{
return type == Quantifier::Optional or
type == Quantifier::RepeatZeroOrMore or
(type == Quantifier::RepeatMinMax and min <= 0);
}
bool allows_infinite_repeat() const
{
return type == Quantifier::RepeatZeroOrMore or
type == Quantifier::RepeatOneOrMore or
(type == Quantifier::RepeatMinMax and max == -1);
};
};
enum class Op
{
Literal,
AnyChar,
Sequence,
Alternation,
LineStart,
LineEnd,
WordBoundary,
NotWordBoundary,
SubjectBegin,
SubjectEnd,
};
struct AstNode
{
Op op;
char value;
Quantifier quantifier;
Vector<std::unique_ptr<AstNode>> children;
};
using AstNodePtr = std::unique_ptr<AstNode>;
AstNodePtr make_ast_node(Op op, char value = 0,
Quantifier quantifier = {Quantifier::One})
{
return AstNodePtr{new AstNode{op, value, quantifier, {}}};
}
// Recursive descent parser based on naming using in the ECMAScript
// standard, although the syntax is not fully compatible.
template<typename Iterator>
struct Parser
{
static AstNodePtr parse(Iterator pos, Iterator end)
{
return disjunction(pos, end);
}
private:
static AstNodePtr disjunction(Iterator& pos, Iterator end)
{
AstNodePtr node = alternative(pos, end);
if (pos == end or *pos != '|')
return node;
AstNodePtr res = make_ast_node(Op::Alternation);
res->children.push_back(std::move(node));
res->children.push_back(disjunction(++pos, end));
return res;
}
static AstNodePtr alternative(Iterator& pos, Iterator end)
{
AstNodePtr res = make_ast_node(Op::Sequence);
while (auto node = term(pos, end))
res->children.push_back(std::move(node));
return res;
}
static AstNodePtr term(Iterator& pos, Iterator end)
{
if (auto node = assertion(pos, end))
return node;
if (auto node = atom(pos, end))
{
node->quantifier = quantifier(pos, end);
return node;
}
return nullptr;
}
static AstNodePtr assertion(Iterator& pos, Iterator end)
{
switch (*pos)
{
case '^': ++pos; return make_ast_node(Op::LineStart);
case '$': ++pos; return make_ast_node(Op::LineEnd);
case '\\':
if (pos+1 == end)
return nullptr;
switch (*(pos+1))
{
case 'b': pos += 2; return make_ast_node(Op::WordBoundary);
case 'B': pos += 2; return make_ast_node(Op::NotWordBoundary);
case '`': pos += 2; return make_ast_node(Op::SubjectBegin);
case '\'': pos += 2; return make_ast_node(Op::SubjectEnd);
}
break;
/* TODO: look ahead, look behind */
}
return nullptr;
}
static AstNodePtr atom(Iterator& pos, Iterator end)
{
const auto c = *pos;
switch (c)
{
case '.': ++pos; return make_ast_node(Op::AnyChar);
case '(':
{
++pos;
auto content = disjunction(pos, end);
if (pos == end or *pos != ')')
throw runtime_error{"Unclosed parenthesis"};
++pos;
return content;
}
default:
if (contains("^$.*+?()[]{}|", c))
return nullptr;
++pos;
return make_ast_node(Op::Literal, c);
}
}
static Quantifier quantifier(Iterator& pos, Iterator end)
{
auto read_int = [](Iterator& pos, Iterator begin, Iterator end) {
int res = 0;
for (; pos != end; ++pos)
{
const auto c = *pos;
if (c < '0' or c > '9')
return pos == begin ? -1 : res;
res = res * 10 + c - '0';
}
return res;
};
switch (*pos)
{
case '*': ++pos; return {Quantifier::RepeatZeroOrMore};
case '+': ++pos; return {Quantifier::RepeatOneOrMore};
case '?': ++pos; return {Quantifier::Optional};
case '{':
{
auto it = pos+1;
int min = read_int(it, it, end);
int max = -1;
if (*it == ',')
{
++it;
max = read_int(it, it, end);
}
if (*it++ != '}')
throw runtime_error{"expected closing bracket"};
pos = it;
return {Quantifier::RepeatMinMax, min, max};
}
default: return {Quantifier::One};
}
}
};
RegexProgram::Offset compile_node(Vector<char>& program, const AstNodePtr& node);
RegexProgram::Offset alloc_offset(Vector<char>& instructions)
{
auto pos = instructions.size();
instructions.resize(instructions.size() + sizeof(RegexProgram::Offset));
return pos;
}
RegexProgram::Offset& get_offset(Vector<char>& instructions, RegexProgram::Offset base)
{
return *reinterpret_cast<RegexProgram::Offset*>(&instructions[base]);
}
RegexProgram::Offset compile_node_inner(Vector<char>& program, const AstNodePtr& node)
{
const auto start_pos = program.size();
Vector<RegexProgram::Offset> goto_inner_end_offsets;
switch (node->op)
{
case Op::Literal:
program.push_back(RegexProgram::Literal);
program.push_back(node->value);
break;
case Op::AnyChar:
program.push_back(RegexProgram::AnyChar);
break;
case Op::Sequence:
for (auto& child : node->children)
compile_node(program, child);
break;
case Op::Alternation:
{
auto& children = node->children;
kak_assert(children.size() == 2);
program.push_back(RegexProgram::Split);
auto offset = alloc_offset(program);
compile_node(program, children[0]);
program.push_back(RegexProgram::Jump);
goto_inner_end_offsets.push_back(alloc_offset(program));
auto right_pos = compile_node(program, children[1]);
get_offset(program, offset) = right_pos;
break;
}
case Op::LineStart:
program.push_back(RegexProgram::LineStart);
break;
case Op::LineEnd:
program.push_back(RegexProgram::LineEnd);
break;
case Op::WordBoundary:
program.push_back(RegexProgram::WordBoundary);
break;
case Op::NotWordBoundary:
program.push_back(RegexProgram::NotWordBoundary);
break;
case Op::SubjectBegin:
program.push_back(RegexProgram::SubjectBegin);
break;
case Op::SubjectEnd:
program.push_back(RegexProgram::SubjectEnd);
break;
}
for (auto& offset : goto_inner_end_offsets)
get_offset(program, offset) = program.size();
return start_pos;
}
RegexProgram::Offset compile_node(Vector<char>& program, const AstNodePtr& node)
{
RegexProgram::Offset pos = program.size();
Vector<RegexProgram::Offset> goto_end_offsets;
if (node->quantifier.allows_none())
{
program.push_back(RegexProgram::Split);
goto_end_offsets.push_back(alloc_offset(program));
}
auto inner_pos = compile_node_inner(program, node);
// Write the node multiple times when we have a min count quantifier
for (int i = 1; i < node->quantifier.min; ++i)
inner_pos = compile_node_inner(program, node);
if (node->quantifier.allows_infinite_repeat())
{
program.push_back(RegexProgram::Split);
get_offset(program, alloc_offset(program)) = inner_pos;
}
// Write the node as an optional match for the min -> max counts
else for (int i = std::max(1, node->quantifier.min); // STILL UGLY !
i < node->quantifier.max; ++i)
{
program.push_back(RegexProgram::Split);
goto_end_offsets.push_back(alloc_offset(program));
compile_node_inner(program, node);
}
for (auto offset : goto_end_offsets)
get_offset(program, offset) = program.size();
return pos;
}
Vector<char> compile(const AstNodePtr& node)
{
Vector<char> res;
compile_node(res, node);
res.push_back(RegexProgram::Match);
return res;
}
template<typename Iterator>
Vector<char> compile(Iterator begin, Iterator end)
{
return compile(Parser<Iterator>::parse(begin, end));
}
}
namespace RegexProgram
{
void dump(ConstArrayView<char> program)
{
for (size_t pos = 0; pos < program.size(); )
{
printf("%4zd ", pos);
switch ((RegexProgram::Op)program[pos++])
{
case RegexProgram::Literal:
printf("literal %c\n", program[pos++]);
break;
case RegexProgram::AnyChar:
printf("any char\n");
break;
case RegexProgram::Jump:
printf("jump %zd\n", *reinterpret_cast<const RegexProgram::Offset*>(&program[pos]));
pos += sizeof(RegexProgram::Offset);
break;
case RegexProgram::Split:
{
printf("split %zd\n", *reinterpret_cast<const RegexProgram::Offset*>(&program[pos]));
pos += sizeof(RegexProgram::Offset);
break;
}
case RegexProgram::LineStart:
printf("line start\n");
break;
case RegexProgram::LineEnd:
printf("line end\n");
break;
case RegexProgram::WordBoundary:
printf("word boundary\n");
break;
case RegexProgram::NotWordBoundary:
printf("not word boundary\n");
break;
case RegexProgram::SubjectBegin:
printf("subject begin\n");
break;
case RegexProgram::SubjectEnd:
printf("subject end\n");
break;
case RegexProgram::Match:
printf("match\n");
}
}
}
struct ThreadedExecutor
{
ThreadedExecutor(ConstArrayView<char> program) : m_program{program} {}
struct StepResult
{
enum Result { Consumed, Matched, Failed } result;
const char* next = nullptr;
};
StepResult step(const char* inst)
{
while (true)
{
char c = m_pos == m_subject.end() ? 0 : *m_pos;
const RegexProgram::Op op = (RegexProgram::Op)*inst++;
switch (op)
{
case RegexProgram::Literal:
if (*inst++ == c)
return { StepResult::Consumed, inst };
return { StepResult::Failed };
case RegexProgram::AnyChar:
return { StepResult::Consumed, inst };
case RegexProgram::Jump:
inst = m_program.begin() + *reinterpret_cast<const RegexProgram::Offset*>(inst);
// if instruction is already going to be executed, drop this thread
if (std::find(m_threads.begin(), m_threads.end(), inst) != m_threads.end())
return { StepResult::Failed };
break;
case RegexProgram::Split:
{
add_thread(*reinterpret_cast<const RegexProgram::Offset*>(inst));
inst += sizeof(RegexProgram::Offset);
break;
}
case RegexProgram::LineStart:
if (not is_line_start())
return { StepResult::Failed };
break;
case RegexProgram::LineEnd:
if (not is_line_end())
return { StepResult::Failed };
break;
case RegexProgram::WordBoundary:
if (not is_word_boundary())
return { StepResult::Failed };
break;
case RegexProgram::NotWordBoundary:
if (is_word_boundary())
return { StepResult::Failed };
break;
case RegexProgram::SubjectBegin:
if (m_pos != m_subject.begin())
return { StepResult::Failed };
break;
case RegexProgram::SubjectEnd:
if (m_pos != m_subject.end())
return { StepResult::Failed };
break;
case RegexProgram::Match:
return { StepResult::Matched };
}
}
return { StepResult::Failed };
}
bool match(ConstArrayView<char> program, StringView data)
{
m_threads = Vector<const char*>{program.begin()};
m_subject = data;
m_pos = data.begin();
for (m_pos = m_subject.begin(); m_pos != m_subject.end(); ++m_pos)
{
for (int i = 0; i < m_threads.size(); ++i)
{
auto res = step(m_threads[i]);
m_threads[i] = res.next;
if (res.result == StepResult::Matched)
return true;
}
m_threads.erase(std::remove(m_threads.begin(), m_threads.end(), nullptr), m_threads.end());
if (m_threads.empty())
break;
}
// Step remaining threads to see if they match without consuming anything else
for (int i = 0; i < m_threads.size(); ++i)
{
if (step(m_threads[i]).result == StepResult::Matched)
return true;
}
return false;
}
void add_thread(RegexProgram::Offset pos)
{
const char* inst = m_program.begin() + pos;
if (std::find(m_threads.begin(), m_threads.end(), inst) == m_threads.end())
m_threads.push_back(inst);
}
bool is_line_start() const
{
return m_pos == m_subject.begin() or *(m_pos-1) == '\n';
}
bool is_line_end() const
{
return m_pos == m_subject.end() or *m_pos == '\n';
}
bool is_word_boundary() const
{
return m_pos == m_subject.begin() or
m_pos == m_subject.end() or
is_word(*(m_pos-1)) != is_word(*m_pos);
}
ConstArrayView<char> m_program;
Vector<const char*> m_threads;
StringView m_subject;
const char* m_pos;
};
}
auto test_regex = UnitTest{[]{
using Exec = RegexProgram::ThreadedExecutor;
{
StringView re = R"(a*b)";
auto program = RegexCompiler::compile(re.begin(), re.end());
RegexProgram::dump(program);
Exec exec{program};
kak_assert(exec.match(program, "b"));
kak_assert(exec.match(program, "ab"));
kak_assert(exec.match(program, "aaab"));
kak_assert(not exec.match(program, "acb"));
kak_assert(not exec.match(program, ""));
}
{
StringView re = R"(^a.*b$)";
auto program = RegexCompiler::compile(re.begin(), re.end());
RegexProgram::dump(program);
Exec exec{program};
kak_assert(exec.match(program, "afoob"));
kak_assert(exec.match(program, "ab"));
kak_assert(not exec.match(program, "bab"));
kak_assert(not exec.match(program, ""));
}
{
StringView re = R"(^(foo|qux|baz)+(bar)?baz$)";
auto program = RegexCompiler::compile(re.begin(), re.end());
RegexProgram::dump(program);
Exec exec{program};
kak_assert(exec.match(program, "fooquxbarbaz"));
kak_assert(not exec.match(program, "fooquxbarbaze"));
kak_assert(not exec.match(program, "quxbar"));
kak_assert(not exec.match(program, "blahblah"));
kak_assert(exec.match(program, "bazbaz"));
kak_assert(exec.match(program, "quxbaz"));
}
{
StringView re = R"(.*\b(foo|bar)\b.*)";
auto program = RegexCompiler::compile(re.begin(), re.end());
RegexProgram::dump(program);
Exec exec{program};
kak_assert(exec.match(program, "qux foo baz"));
kak_assert(not exec.match(program, "quxfoobaz"));
kak_assert(exec.match(program, "bar"));
kak_assert(not exec.match(program, "foobar"));
}
{
StringView re = R"(\`(foo|bar)\')";
auto program = RegexCompiler::compile(re.begin(), re.end());
RegexProgram::dump(program);
Exec exec{program};
kak_assert(exec.match(program, "foo"));
kak_assert(exec.match(program, "bar"));
kak_assert(not exec.match(program, "foobar"));
}
{
StringView re = R"(\`a{3,5}b\')";
auto program = RegexCompiler::compile(re.begin(), re.end());
RegexProgram::dump(program);
Exec exec{program};
kak_assert(not exec.match(program, "aab"));
kak_assert(exec.match(program, "aaab"));
kak_assert(not exec.match(program, "aaaaaab"));
kak_assert(exec.match(program, "aaaaab"));
}
{
StringView re = R"(\`a{3,}b\')";
auto program = RegexCompiler::compile(re.begin(), re.end());
RegexProgram::dump(program);
Exec exec{program};
kak_assert(not exec.match(program, "aab"));
kak_assert(exec.match(program, "aaab"));
kak_assert(exec.match(program, "aaaaab"));
}
{
StringView re = R"(\`a{,3}b\')";
auto program = RegexCompiler::compile(re.begin(), re.end());
RegexProgram::dump(program);
Exec exec{program};
kak_assert(exec.match(program, "b"));
kak_assert(exec.match(program, "ab"));
kak_assert(exec.match(program, "aaab"));
kak_assert(not exec.match(program, "aaaab"));
}
}};
}