#include "regex_impl.hh" #include "vector.hh" #include "unit_tests.hh" #include "string.hh" #include "unicode.hh" #include "exception.hh" #include "array_view.hh" namespace Kakoune { namespace RegexProgram { enum Op : char { Match, Literal, AnyChar, Jump, Split, LineStart, LineEnd, WordBoundary, NotWordBoundary, SubjectBegin, SubjectEnd, }; using Offset = size_t; } namespace RegexCompiler { struct Quantifier { enum Type { One, Optional, RepeatZeroOrMore, RepeatOneOrMore, RepeatMinMax, }; Type type = One; int min = -1, max = -1; bool allows_none() const { return type == Quantifier::Optional or type == Quantifier::RepeatZeroOrMore or (type == Quantifier::RepeatMinMax and min <= 0); } bool allows_infinite_repeat() const { return type == Quantifier::RepeatZeroOrMore or type == Quantifier::RepeatOneOrMore or (type == Quantifier::RepeatMinMax and max == -1); }; }; enum class Op { Literal, AnyChar, Sequence, Alternation, LineStart, LineEnd, WordBoundary, NotWordBoundary, SubjectBegin, SubjectEnd, }; struct AstNode { Op op; char value; Quantifier quantifier; Vector> children; }; using AstNodePtr = std::unique_ptr; AstNodePtr make_ast_node(Op op, char value = 0, Quantifier quantifier = {Quantifier::One}) { return AstNodePtr{new AstNode{op, value, quantifier, {}}}; } // Recursive descent parser based on naming using in the ECMAScript // standard, although the syntax is not fully compatible. template struct Parser { static AstNodePtr parse(Iterator pos, Iterator end) { return disjunction(pos, end); } private: static AstNodePtr disjunction(Iterator& pos, Iterator end) { AstNodePtr node = alternative(pos, end); if (pos == end or *pos != '|') return node; AstNodePtr res = make_ast_node(Op::Alternation); res->children.push_back(std::move(node)); res->children.push_back(disjunction(++pos, end)); return res; } static AstNodePtr alternative(Iterator& pos, Iterator end) { AstNodePtr res = make_ast_node(Op::Sequence); while (auto node = term(pos, end)) res->children.push_back(std::move(node)); return res; } static AstNodePtr term(Iterator& pos, Iterator end) { if (auto node = assertion(pos, end)) return node; if (auto node = atom(pos, end)) { node->quantifier = quantifier(pos, end); return node; } return nullptr; } static AstNodePtr assertion(Iterator& pos, Iterator end) { switch (*pos) { case '^': ++pos; return make_ast_node(Op::LineStart); case '$': ++pos; return make_ast_node(Op::LineEnd); case '\\': if (pos+1 == end) return nullptr; switch (*(pos+1)) { case 'b': pos += 2; return make_ast_node(Op::WordBoundary); case 'B': pos += 2; return make_ast_node(Op::NotWordBoundary); case '`': pos += 2; return make_ast_node(Op::SubjectBegin); case '\'': pos += 2; return make_ast_node(Op::SubjectEnd); } break; /* TODO: look ahead, look behind */ } return nullptr; } static AstNodePtr atom(Iterator& pos, Iterator end) { const auto c = *pos; switch (c) { case '.': ++pos; return make_ast_node(Op::AnyChar); case '(': { ++pos; auto content = disjunction(pos, end); if (pos == end or *pos != ')') throw runtime_error{"Unclosed parenthesis"}; ++pos; return content; } default: if (contains("^$.*+?()[]{}|", c)) return nullptr; ++pos; return make_ast_node(Op::Literal, c); } } static Quantifier quantifier(Iterator& pos, Iterator end) { auto read_int = [](Iterator& pos, Iterator begin, Iterator end) { int res = 0; for (; pos != end; ++pos) { const auto c = *pos; if (c < '0' or c > '9') return pos == begin ? -1 : res; res = res * 10 + c - '0'; } return res; }; switch (*pos) { case '*': ++pos; return {Quantifier::RepeatZeroOrMore}; case '+': ++pos; return {Quantifier::RepeatOneOrMore}; case '?': ++pos; return {Quantifier::Optional}; case '{': { auto it = pos+1; int min = read_int(it, it, end); int max = -1; if (*it == ',') { ++it; max = read_int(it, it, end); } if (*it++ != '}') throw runtime_error{"expected closing bracket"}; pos = it; return {Quantifier::RepeatMinMax, min, max}; } default: return {Quantifier::One}; } } }; RegexProgram::Offset compile_node(Vector& program, const AstNodePtr& node); RegexProgram::Offset alloc_offset(Vector& instructions) { auto pos = instructions.size(); instructions.resize(instructions.size() + sizeof(RegexProgram::Offset)); return pos; } RegexProgram::Offset& get_offset(Vector& instructions, RegexProgram::Offset base) { return *reinterpret_cast(&instructions[base]); } RegexProgram::Offset compile_node_inner(Vector& program, const AstNodePtr& node) { const auto start_pos = program.size(); Vector goto_inner_end_offsets; switch (node->op) { case Op::Literal: program.push_back(RegexProgram::Literal); program.push_back(node->value); break; case Op::AnyChar: program.push_back(RegexProgram::AnyChar); break; case Op::Sequence: for (auto& child : node->children) compile_node(program, child); break; case Op::Alternation: { auto& children = node->children; kak_assert(children.size() == 2); program.push_back(RegexProgram::Split); auto offset = alloc_offset(program); compile_node(program, children[0]); program.push_back(RegexProgram::Jump); goto_inner_end_offsets.push_back(alloc_offset(program)); auto right_pos = compile_node(program, children[1]); get_offset(program, offset) = right_pos; break; } case Op::LineStart: program.push_back(RegexProgram::LineStart); break; case Op::LineEnd: program.push_back(RegexProgram::LineEnd); break; case Op::WordBoundary: program.push_back(RegexProgram::WordBoundary); break; case Op::NotWordBoundary: program.push_back(RegexProgram::NotWordBoundary); break; case Op::SubjectBegin: program.push_back(RegexProgram::SubjectBegin); break; case Op::SubjectEnd: program.push_back(RegexProgram::SubjectEnd); break; } for (auto& offset : goto_inner_end_offsets) get_offset(program, offset) = program.size(); return start_pos; } RegexProgram::Offset compile_node(Vector& program, const AstNodePtr& node) { RegexProgram::Offset pos = program.size(); Vector goto_end_offsets; if (node->quantifier.allows_none()) { program.push_back(RegexProgram::Split); goto_end_offsets.push_back(alloc_offset(program)); } auto inner_pos = compile_node_inner(program, node); // Write the node multiple times when we have a min count quantifier for (int i = 1; i < node->quantifier.min; ++i) inner_pos = compile_node_inner(program, node); if (node->quantifier.allows_infinite_repeat()) { program.push_back(RegexProgram::Split); get_offset(program, alloc_offset(program)) = inner_pos; } // Write the node as an optional match for the min -> max counts else for (int i = std::max(1, node->quantifier.min); // STILL UGLY ! i < node->quantifier.max; ++i) { program.push_back(RegexProgram::Split); goto_end_offsets.push_back(alloc_offset(program)); compile_node_inner(program, node); } for (auto offset : goto_end_offsets) get_offset(program, offset) = program.size(); return pos; } Vector compile(const AstNodePtr& node) { Vector res; compile_node(res, node); res.push_back(RegexProgram::Match); return res; } template Vector compile(Iterator begin, Iterator end) { return compile(Parser::parse(begin, end)); } } namespace RegexProgram { void dump(ConstArrayView program) { for (size_t pos = 0; pos < program.size(); ) { printf("%4zd ", pos); switch ((RegexProgram::Op)program[pos++]) { case RegexProgram::Literal: printf("literal %c\n", program[pos++]); break; case RegexProgram::AnyChar: printf("any char\n"); break; case RegexProgram::Jump: printf("jump %zd\n", *reinterpret_cast(&program[pos])); pos += sizeof(RegexProgram::Offset); break; case RegexProgram::Split: { printf("split %zd\n", *reinterpret_cast(&program[pos])); pos += sizeof(RegexProgram::Offset); break; } case RegexProgram::LineStart: printf("line start\n"); break; case RegexProgram::LineEnd: printf("line end\n"); break; case RegexProgram::WordBoundary: printf("word boundary\n"); break; case RegexProgram::NotWordBoundary: printf("not word boundary\n"); break; case RegexProgram::SubjectBegin: printf("subject begin\n"); break; case RegexProgram::SubjectEnd: printf("subject end\n"); break; case RegexProgram::Match: printf("match\n"); } } } struct ThreadedExecutor { ThreadedExecutor(ConstArrayView program) : m_program{program} {} struct StepResult { enum Result { Consumed, Matched, Failed } result; const char* next = nullptr; }; StepResult step(const char* inst) { while (true) { char c = m_pos == m_subject.end() ? 0 : *m_pos; const RegexProgram::Op op = (RegexProgram::Op)*inst++; switch (op) { case RegexProgram::Literal: if (*inst++ == c) return { StepResult::Consumed, inst }; return { StepResult::Failed }; case RegexProgram::AnyChar: return { StepResult::Consumed, inst }; case RegexProgram::Jump: inst = m_program.begin() + *reinterpret_cast(inst); // if instruction is already going to be executed, drop this thread if (std::find(m_threads.begin(), m_threads.end(), inst) != m_threads.end()) return { StepResult::Failed }; break; case RegexProgram::Split: { add_thread(*reinterpret_cast(inst)); inst += sizeof(RegexProgram::Offset); break; } case RegexProgram::LineStart: if (not is_line_start()) return { StepResult::Failed }; break; case RegexProgram::LineEnd: if (not is_line_end()) return { StepResult::Failed }; break; case RegexProgram::WordBoundary: if (not is_word_boundary()) return { StepResult::Failed }; break; case RegexProgram::NotWordBoundary: if (is_word_boundary()) return { StepResult::Failed }; break; case RegexProgram::SubjectBegin: if (m_pos != m_subject.begin()) return { StepResult::Failed }; break; case RegexProgram::SubjectEnd: if (m_pos != m_subject.end()) return { StepResult::Failed }; break; case RegexProgram::Match: return { StepResult::Matched }; } } return { StepResult::Failed }; } bool match(ConstArrayView program, StringView data) { m_threads = Vector{program.begin()}; m_subject = data; m_pos = data.begin(); for (m_pos = m_subject.begin(); m_pos != m_subject.end(); ++m_pos) { for (int i = 0; i < m_threads.size(); ++i) { auto res = step(m_threads[i]); m_threads[i] = res.next; if (res.result == StepResult::Matched) return true; } m_threads.erase(std::remove(m_threads.begin(), m_threads.end(), nullptr), m_threads.end()); if (m_threads.empty()) break; } // Step remaining threads to see if they match without consuming anything else for (int i = 0; i < m_threads.size(); ++i) { if (step(m_threads[i]).result == StepResult::Matched) return true; } return false; } void add_thread(RegexProgram::Offset pos) { const char* inst = m_program.begin() + pos; if (std::find(m_threads.begin(), m_threads.end(), inst) == m_threads.end()) m_threads.push_back(inst); } bool is_line_start() const { return m_pos == m_subject.begin() or *(m_pos-1) == '\n'; } bool is_line_end() const { return m_pos == m_subject.end() or *m_pos == '\n'; } bool is_word_boundary() const { return m_pos == m_subject.begin() or m_pos == m_subject.end() or is_word(*(m_pos-1)) != is_word(*m_pos); } ConstArrayView m_program; Vector m_threads; StringView m_subject; const char* m_pos; }; } auto test_regex = UnitTest{[]{ using Exec = RegexProgram::ThreadedExecutor; { StringView re = R"(a*b)"; auto program = RegexCompiler::compile(re.begin(), re.end()); RegexProgram::dump(program); Exec exec{program}; kak_assert(exec.match(program, "b")); kak_assert(exec.match(program, "ab")); kak_assert(exec.match(program, "aaab")); kak_assert(not exec.match(program, "acb")); kak_assert(not exec.match(program, "")); } { StringView re = R"(^a.*b$)"; auto program = RegexCompiler::compile(re.begin(), re.end()); RegexProgram::dump(program); Exec exec{program}; kak_assert(exec.match(program, "afoob")); kak_assert(exec.match(program, "ab")); kak_assert(not exec.match(program, "bab")); kak_assert(not exec.match(program, "")); } { StringView re = R"(^(foo|qux|baz)+(bar)?baz$)"; auto program = RegexCompiler::compile(re.begin(), re.end()); RegexProgram::dump(program); Exec exec{program}; kak_assert(exec.match(program, "fooquxbarbaz")); kak_assert(not exec.match(program, "fooquxbarbaze")); kak_assert(not exec.match(program, "quxbar")); kak_assert(not exec.match(program, "blahblah")); kak_assert(exec.match(program, "bazbaz")); kak_assert(exec.match(program, "quxbaz")); } { StringView re = R"(.*\b(foo|bar)\b.*)"; auto program = RegexCompiler::compile(re.begin(), re.end()); RegexProgram::dump(program); Exec exec{program}; kak_assert(exec.match(program, "qux foo baz")); kak_assert(not exec.match(program, "quxfoobaz")); kak_assert(exec.match(program, "bar")); kak_assert(not exec.match(program, "foobar")); } { StringView re = R"(\`(foo|bar)\')"; auto program = RegexCompiler::compile(re.begin(), re.end()); RegexProgram::dump(program); Exec exec{program}; kak_assert(exec.match(program, "foo")); kak_assert(exec.match(program, "bar")); kak_assert(not exec.match(program, "foobar")); } { StringView re = R"(\`a{3,5}b\')"; auto program = RegexCompiler::compile(re.begin(), re.end()); RegexProgram::dump(program); Exec exec{program}; kak_assert(not exec.match(program, "aab")); kak_assert(exec.match(program, "aaab")); kak_assert(not exec.match(program, "aaaaaab")); kak_assert(exec.match(program, "aaaaab")); } { StringView re = R"(\`a{3,}b\')"; auto program = RegexCompiler::compile(re.begin(), re.end()); RegexProgram::dump(program); Exec exec{program}; kak_assert(not exec.match(program, "aab")); kak_assert(exec.match(program, "aaab")); kak_assert(exec.match(program, "aaaaab")); } { StringView re = R"(\`a{,3}b\')"; auto program = RegexCompiler::compile(re.begin(), re.end()); RegexProgram::dump(program); Exec exec{program}; kak_assert(exec.match(program, "b")); kak_assert(exec.match(program, "ab")); kak_assert(exec.match(program, "aaab")); kak_assert(not exec.match(program, "aaaab")); } }}; }