Make ALU synchronous, generate and view traces

This commit is contained in:
xenia 2024-01-21 20:49:28 +01:00
parent 388c24ec78
commit 1b316ead40
3 changed files with 243 additions and 64 deletions

View File

@ -32,6 +32,15 @@
mkdir "$out/bin" && cp "$out/Valu" "$out/bin/alu-sim"
'';
alu-sim-trace = pkgs.runCommandCC "alu-sim-trace" {} ''
${verilate-src "--cc --build --exe --trace -CFLAGS -DTRACE=1 ./simulation/tester.cpp ./simulation/test_alu.cpp -top alu"}
mv obj_dir "$out"
mkdir "$out/bin" && cp "$out/Valu" "$out/bin/alu-sim"
$out/bin/alu-sim $out/trace.vcd
echo "${pkgs.gtkwave}/bin/gtkwave $out/trace.vcd" > $out/bin/alu-sim-trace
chmod u+x $out/bin/alu-sim-trace
'';
alu-synth = pkgs.runCommandCC "alu-synth" {} ''
mkdir -p "$out"
find ${./src} -name '*.v' -exec ${yosys}/bin/yosys -Q -p "synth_ice40 -top topmost -json $out/synth.json -dsp" {} +
@ -42,7 +51,7 @@
'';
deps = [
yosys pkgs.nextpnrWithGui pkgs.icestorm verilator
yosys pkgs.nextpnrWithGui pkgs.icestorm verilator pkgs.gtkwave
];
in rec {
packages.verilator = verilator;
@ -50,6 +59,8 @@
packages.lint = lint;
packages.alu-sim = alu-sim;
packages.alu-sim-trace = alu-sim-trace;
packages.alu-synth = alu-synth;
packages.alu-synth-view = alu-synth-view;

View File

@ -3,9 +3,24 @@
#include "tester.hpp"
#include <stdint.h>
#include <iostream>
#include <random>
#ifdef TRACE
#include "verilated_vcd_c.h"
#endif
struct state {
VerilatedContext *ctx;
Valu *valu;
#ifdef TRACE
VerilatedVcdC *trace;
#endif
};
struct alu_testcase {
state *state;
std::string name;
// Inputs
uint32_t A, B;
@ -30,77 +45,156 @@ std::string fmt_hex(uint32_t n) {
return hex;
}
void test_op(Valu *valu, Tester *tester, alu_testcase test) {
void posedge(state *state) {
#ifdef TRACE
state->ctx->timeInc(1);
state->valu->CLK = 1;
state->valu->eval();
state->trace->dump(state->ctx->time());
state->ctx->timeInc(1);
state->valu->CLK = 0;
state->valu->eval();
state->trace->dump(state->ctx->time());
#else
state->ctx->timeInc(1);
state->valu->CLK = 1;
state->valu->eval();
state->ctx->timeInc(1);
state->valu->CLK = 0;
state->valu->eval();
#endif
}
void test_op(Tester *tester, alu_testcase test) {
Tester subtester(tester, test.name);
// assign inputs
valu->op = test.op;
valu->A = test.A;
valu->B = test.B;
posedge(test.state);
valu->eval();
// assign inputs
test.state->valu->op = test.op;
test.state->valu->A = test.A;
test.state->valu->B = test.B;
test.state->valu->EN = 1;
posedge(test.state);
test.state->valu->EN = 0;
int max_cycles = test.max_cycles.has_value() ? *test.max_cycles : 10000;
int n_cycles = 1;
for (; !test.state->valu->RDY && n_cycles < 10 + max_cycles * 2; n_cycles++) {
posedge(test.state);
}
char rdy_after_s[100];
snprintf(rdy_after_s, sizeof rdy_after_s, "RDY = 1 (after %d cycle(s))", n_cycles);
subtester.assert_eq(rdy_after_s, test.state->valu->RDY, 1);
if (test.max_cycles.has_value()) {
if (n_cycles <= test.max_cycles) {
char n_cycles_s[100];
snprintf(n_cycles_s, sizeof n_cycles_s, "Finished within %d cycle(s) (actually %d)", test.max_cycles, n_cycles);
subtester.assert_eq(n_cycles_s, n_cycles, n_cycles);
} else {
subtester.assert_eq("Finished within correct number of cycles", n_cycles, test.max_cycles);
}
}
std::string o_name("O == ");
o_name.append(fmt_hex(test.O));
subtester.assert_eq(o_name, valu->O, test.O);
subtester.assert_eq(o_name, test.state->valu->O, test.O);
if (test.overflow.has_value()) {
if (*test.overflow)
subtester.assert_eq("overflow flag set", valu->Fflow, 1);
subtester.assert_eq("overflow flag set", test.state->valu->Fflow, 1);
else
subtester.assert_eq("no overflow flag", valu->Fflow, 0);
subtester.assert_eq("no overflow flag", test.state->valu->Fflow, 0);
}
if (test.zero.has_value()) {
if (*test.zero)
subtester.assert_eq("zero flag set", valu->Fzero, 1);
subtester.assert_eq("zero flag set", test.state->valu->Fzero, 1);
else
subtester.assert_eq("no zero flag", valu->Fzero, 0);
subtester.assert_eq("no zero flag", test.state->valu->Fzero, 0);
}
}
int main(int argc, char **argv) {
bool DO_AUTO = false;
VerilatedContext *vctx = new VerilatedContext;
Verilated::traceEverOn(true);
Valu *valu = new Valu(vctx);
#ifdef TRACE
if (argc != 2) {
std::cout << "Run with argument for destination!" << std::endl;
return 1;
}
VerilatedVcdC *trace = new VerilatedVcdC;
valu->trace(trace, 99);
trace->open(argv[1]);
std::cout << "(writing trace to " << argv[1] << ")" << std::endl;
state state = {
.ctx = vctx,
.valu = valu,
.trace = trace,
};
#else
state state = {
.ctx = vctx,
.valu = valu,
};
#endif
Tester alu_t("alu");
{
Tester add_t(&alu_t, "add", true);
test_op(valu, &add_t, {
test_op(&add_t, {
.state = &state,
.name = "0x2137+0x1234",
.A = 0x2137, .B = 0x1234, .op = 0b000,
.O = 0x336b, .overflow = false,
});
test_op(valu, &add_t, {
test_op(&add_t, {
.state = &state,
.name = "0x09+0x10",
.A = 0x09, .B = 0x10, .op = 0b000,
.O = 0x19, .overflow = false,
});
test_op(valu, &add_t, {
test_op(&add_t, {
.state = &state,
.name = "0x5555+0x5555",
.A = 0x5555, .B = 0x5555, .op = 0b000,
.O = 0xaaaa, .overflow = false,
});
test_op(valu, &add_t, {
test_op(&add_t, {
.state = &state,
.name = "0xfffffffe+0x1",
.A = 0xfffffffe, .B = 0x1, .op = 0b000,
.O = 0xffffffff, .overflow = false, .zero = false,
});
test_op(valu, &add_t, {
test_op(&add_t, {
.state = &state,
.name = "0xffffffff+0x1",
.A = 0xffffffff, .B = 0x1, .op = 0b000,
.O = 0x0, .overflow = true, .zero = true,
});
test_op(valu, &add_t, {
test_op(&add_t, {
.state = &state,
.name = "0xffffffff+0x2",
.A = 0xffffffff, .B = 0x2, .op = 0b000,
.O = 0x1, .overflow = true, .zero = false,
});
test_op(valu, &add_t, {
test_op(&add_t, {
.state = &state,
.name = "0x0+0x0",
.A = 0x0, .B = 0x0, .op = 0b000,
.O = 0x0, .overflow = false, .zero = true,
@ -110,31 +204,36 @@ int main(int argc, char **argv) {
{
Tester sub_t(&alu_t, "sub", true);
test_op(valu, &sub_t, {
test_op(&sub_t, {
.state = &state,
.name = "0x2137-0x0420",
.A = 0x2137, .B = 0x0420, .op = 0b001,
.O = 0x1d17, .overflow = false,
});
test_op(valu, &sub_t, {
test_op(&sub_t, {
.state = &state,
.name = "0x0-0x1",
.A = 0x0, .B = 0x1, .op = 0b001,
.O = 0xffffffff, .overflow = true,
});
test_op(valu, &sub_t, {
test_op(&sub_t, {
.state = &state,
.name = "0x100-0x0200",
.A = 0x100, .B = 0x200, .op = 0b001,
.O = 0xffffff00, .overflow = true,
});
test_op(valu, &sub_t, {
test_op(&sub_t, {
.state = &state,
.name = "0x21-0x9",
.A = 0x21, .B = 0x9, .op = 0b001,
.O = 0x18, .overflow = false, .zero = false,
});
test_op(valu, &sub_t, {
test_op(&sub_t, {
.state = &state,
.name = "0x20-0x20",
.A = 0x20, .B = 0x20, .op = 0b001,
.O = 0x0, .overflow = false, .zero = true,
@ -145,38 +244,43 @@ int main(int argc, char **argv) {
Tester bitwise_t(&alu_t, "bitwise", true);
// 0x3 = 0b0011, 0x5 = 0b0101
test_op(valu, &bitwise_t, {
test_op(&bitwise_t, {
.state = &state,
.name = "0x3&0x5",
.A = 0x3, .B = 0x5, .op = 0b100,
.O = 0x1, .zero = false,
});
test_op(valu, &bitwise_t, {
test_op(&bitwise_t, {
.state = &state,
.name = "0x3|0x5",
.A = 0x3, .B = 0x5, .op = 0b101,
.O = 0x7, .zero = false,
});
test_op(valu, &bitwise_t, {
test_op(&bitwise_t, {
.state = &state,
.name = "0x3^0x5",
.A = 0x3, .B = 0x5, .op = 0b110,
.O = 0x6, .zero = false,
});
test_op(valu, &bitwise_t, {
test_op(&bitwise_t, {
.state = &state,
.name = "~0xa5a5a5a5",
.A = 0xa5a5a5a5, .B = 0x0, .op = 0b111,
.O = 0x5a5a5a5a, .zero = false,
});
test_op(valu, &bitwise_t, {
test_op(&bitwise_t, {
.state = &state,
.name = "~0xffffffff",
.A = 0xffffffff, .B = 0x0, .op = 0b111,
.O = 0x0, .zero = true,
});
}
{
if (DO_AUTO) {
Tester auto_t(&alu_t, "auto", true);
std::default_random_engine eng;
@ -194,7 +298,8 @@ int main(int argc, char **argv) {
name.append("+");
name.append(fmt_hex(B));
test_op(valu, &auto_t, {
test_op(&auto_t, {
.state = &state,
.name = name,
.A = A, .B = B, .op = 0b000,
.O = A + B, .overflow = (A + B < A), .zero = (A + B == 0),
@ -206,7 +311,8 @@ int main(int argc, char **argv) {
name.append("-");
name.append(fmt_hex(B));
test_op(valu, &auto_t, {
test_op(&auto_t, {
.state = &state,
.name = name,
.A = A, .B = B, .op = 0b001,
.O = A - B, .overflow = (B > A), .zero = (A == B),
@ -218,7 +324,8 @@ int main(int argc, char **argv) {
name.append("&");
name.append(fmt_hex(B));
test_op(valu, &auto_t, {
test_op(&auto_t, {
.state = &state,
.name = name,
.A = A, .B = B, .op = 0b100,
.O = A & B, .overflow = 0, .zero = ((A & B) == 0),
@ -230,7 +337,8 @@ int main(int argc, char **argv) {
name.append("|");
name.append(fmt_hex(B));
test_op(valu, &auto_t, {
test_op(&auto_t, {
.state = &state,
.name = name,
.A = A, .B = B, .op = 0b101,
.O = A | B, .overflow = 0, .zero = ((A | B) == 0),
@ -242,7 +350,8 @@ int main(int argc, char **argv) {
name.append("^");
name.append(fmt_hex(B));
test_op(valu, &auto_t, {
test_op(&auto_t, {
.state = &state,
.name = name,
.A = A, .B = B, .op = 0b110,
.O = A ^ B, .overflow = 0, .zero = ((A ^ B) == 0),
@ -253,7 +362,8 @@ int main(int argc, char **argv) {
name.append("~");
name.append(fmt_hex(A));
test_op(valu, &auto_t, {
test_op(&auto_t, {
.state = &state,
.name = name,
.A = A, .B = B, .op = 0b111,
.O = ~A, .overflow = 0, .zero = (A == 0xffffffff),
@ -263,4 +373,7 @@ int main(int argc, char **argv) {
}
}
}
#ifdef TRACE
state.trace->close();
#endif
}

View File

@ -12,44 +12,99 @@
111 = not A
*/
module alu(
input CLK,
input EN,
output reg RDY,
input [31:0] A,
input [31:0] B,
input [2:0] op,
output [31:0] O,
output Fflow,
output Fzero
output reg [31:0] O,
output reg Fflow,
output reg Fzero
);
wire [31:0] adder_out;
// Constants
localparam OP_ADD = 3'b000;
localparam OP_SUB = 3'b001;
localparam OP_AND = 3'b100;
localparam OP_OR = 3'b101;
localparam OP_XOR = 3'b110;
localparam OP_NOT = 3'b111;
begin : addsub
wire addition = op == 3'b000;
wire subtraction = op == 3'b001;
wire [31:0] adder_B = subtraction ? ~B : B;
wire adder_cout;
localparam ST_IDLE = 0;
carry_select_adder a(A, adder_B, subtraction, adder_out, adder_cout);
assign Fflow =
addition ? adder_cout :
subtraction ? ~adder_cout :
0;
end
// State
wire [31:0] mult_out_hi;
wire [31:0] mult_out_lo;
multiplier mult(A, B, mult_out_hi, mult_out_lo);
reg [8:0] state = ST_IDLE;
reg [2:0] selected_out;
assign RDY = state == ST_IDLE;
reg [31:0] bitwise_out;
// Outputs
assign O =
op == 3'b000 ? adder_out :
op == 3'b001 ? adder_out :
op == 3'b010 ? mult_out_hi :
op == 3'b011 ? mult_out_lo :
op == 3'b100 ? A & B :
op == 3'b101 ? A | B :
op == 3'b110 ? A ^ B :
op == 3'b111 ? ~A :
'0;
(selected_out == OP_ADD || selected_out == OP_SUB) ? adder_out :
bitwise_out;
assign Fflow =
selected_out == OP_ADD ? adder_carry_out :
selected_out == OP_SUB ? ~adder_carry_out :
0;
assign Fzero = ~(| O);
// Modules
reg [31:0] adder_A, adder_B;
reg adder_carry_in, adder_carry_out;
wire [31:0] adder_out;
carry_select_adder adder(adder_A, adder_B, adder_carry_in, adder_out, adder_carry_out);
// Clocking
always @(posedge CLK) begin
case (state)
ST_IDLE: begin
if (EN) begin
case (op)
OP_ADD: begin
adder_A <= A;
adder_B <= B;
adder_carry_in <= 0;
selected_out <= OP_ADD;
end
OP_SUB: begin
adder_A <= A;
adder_B <= ~B;
adder_carry_in <= 1;
selected_out <= OP_SUB;
end
OP_AND: begin
bitwise_out <= A & B;
selected_out <= OP_AND;
end
OP_OR: begin
bitwise_out <= A | B;
selected_out <= OP_OR;
end
OP_XOR: begin
bitwise_out <= A ^ B;
selected_out <= OP_XOR;
end
OP_NOT: begin
bitwise_out <= ~A;
selected_out <= OP_NOT;
end
default: begin end // TODO: this should be $stop in verilator, no-op in synthesis
endcase
end
end
default: $stop;
endcase
end
endmodule