fox32-hw/simulation/test_alu.cpp

380 lines
10 KiB
C++

#include "Valu.h"
#include "verilated.h"
#include "tester.hpp"
#include <stdint.h>
#include <iostream>
#include <random>
#ifdef TRACE
#include "verilated_vcd_c.h"
#endif
struct state {
VerilatedContext *ctx;
Valu *valu;
#ifdef TRACE
VerilatedVcdC *trace;
#endif
};
struct alu_testcase {
state *state;
std::string name;
// Inputs
uint32_t A, B;
uint8_t op;
// Outputs
uint32_t O;
std::optional<bool> overflow, zero;
std::optional<unsigned int> max_cycles;
};
std::string fmt_hex(uint32_t n) {
char hex[100];
if (n < 0x100)
snprintf(hex, sizeof hex, "0x%02x", n);
else if (n < 0x10000)
snprintf(hex, sizeof hex, "0x%04x", n);
else
snprintf(hex, sizeof hex, "0x%08x", n);
return hex;
}
void posedge(state *state) {
#ifdef TRACE
state->ctx->timeInc(1);
state->valu->CLK = 1;
state->valu->eval();
state->trace->dump(state->ctx->time());
state->ctx->timeInc(1);
state->valu->CLK = 0;
state->valu->eval();
state->trace->dump(state->ctx->time());
#else
state->ctx->timeInc(1);
state->valu->CLK = 1;
state->valu->eval();
state->ctx->timeInc(1);
state->valu->CLK = 0;
state->valu->eval();
#endif
}
void test_op(Tester *tester, alu_testcase test) {
Tester subtester(tester, test.name);
posedge(test.state);
// assign inputs
test.state->valu->op = test.op;
test.state->valu->A = test.A;
test.state->valu->B = test.B;
test.state->valu->EN = 1;
posedge(test.state);
test.state->valu->EN = 0;
int max_cycles = test.max_cycles.has_value() ? *test.max_cycles : 10000;
int n_cycles = 1;
for (; !test.state->valu->RDY && n_cycles < 10 + max_cycles * 2; n_cycles++) {
posedge(test.state);
}
char rdy_after_s[100];
snprintf(rdy_after_s, sizeof rdy_after_s, "RDY = 1 (after %d cycle(s))", n_cycles);
subtester.assert_eq(rdy_after_s, test.state->valu->RDY, 1);
if (test.max_cycles.has_value()) {
if (n_cycles <= test.max_cycles) {
char n_cycles_s[100];
snprintf(n_cycles_s, sizeof n_cycles_s, "Finished within %d cycle(s) (actually %d)", test.max_cycles, n_cycles);
subtester.assert_eq(n_cycles_s, n_cycles, n_cycles);
} else {
subtester.assert_eq("Finished within correct number of cycles", n_cycles, test.max_cycles);
}
}
std::string o_name("O == ");
o_name.append(fmt_hex(test.O));
subtester.assert_eq(o_name, test.state->valu->O, test.O);
if (test.overflow.has_value()) {
if (*test.overflow)
subtester.assert_eq("overflow flag set", test.state->valu->Fflow, 1);
else
subtester.assert_eq("no overflow flag", test.state->valu->Fflow, 0);
}
if (test.zero.has_value()) {
if (*test.zero)
subtester.assert_eq("zero flag set", test.state->valu->Fzero, 1);
else
subtester.assert_eq("no zero flag", test.state->valu->Fzero, 0);
}
}
int main(int argc, char **argv) {
bool DO_AUTO = false;
VerilatedContext *vctx = new VerilatedContext;
Verilated::traceEverOn(true);
Valu *valu = new Valu(vctx);
#ifdef TRACE
if (argc != 2) {
std::cout << "Run with argument for destination!" << std::endl;
return 1;
}
VerilatedVcdC *trace = new VerilatedVcdC;
valu->trace(trace, 99);
trace->open(argv[1]);
std::cout << "(writing trace to " << argv[1] << ")" << std::endl;
state state = {
.ctx = vctx,
.valu = valu,
.trace = trace,
};
#else
state state = {
.ctx = vctx,
.valu = valu,
};
#endif
Tester alu_t("alu");
{
Tester add_t(&alu_t, "add", true);
test_op(&add_t, {
.state = &state,
.name = "0x2137+0x1234",
.A = 0x2137, .B = 0x1234, .op = 0b000,
.O = 0x336b, .overflow = false,
});
test_op(&add_t, {
.state = &state,
.name = "0x09+0x10",
.A = 0x09, .B = 0x10, .op = 0b000,
.O = 0x19, .overflow = false,
});
test_op(&add_t, {
.state = &state,
.name = "0x5555+0x5555",
.A = 0x5555, .B = 0x5555, .op = 0b000,
.O = 0xaaaa, .overflow = false,
});
test_op(&add_t, {
.state = &state,
.name = "0xfffffffe+0x1",
.A = 0xfffffffe, .B = 0x1, .op = 0b000,
.O = 0xffffffff, .overflow = false, .zero = false,
});
test_op(&add_t, {
.state = &state,
.name = "0xffffffff+0x1",
.A = 0xffffffff, .B = 0x1, .op = 0b000,
.O = 0x0, .overflow = true, .zero = true,
});
test_op(&add_t, {
.state = &state,
.name = "0xffffffff+0x2",
.A = 0xffffffff, .B = 0x2, .op = 0b000,
.O = 0x1, .overflow = true, .zero = false,
});
test_op(&add_t, {
.state = &state,
.name = "0x0+0x0",
.A = 0x0, .B = 0x0, .op = 0b000,
.O = 0x0, .overflow = false, .zero = true,
});
}
{
Tester sub_t(&alu_t, "sub", true);
test_op(&sub_t, {
.state = &state,
.name = "0x2137-0x0420",
.A = 0x2137, .B = 0x0420, .op = 0b001,
.O = 0x1d17, .overflow = false,
});
test_op(&sub_t, {
.state = &state,
.name = "0x0-0x1",
.A = 0x0, .B = 0x1, .op = 0b001,
.O = 0xffffffff, .overflow = true,
});
test_op(&sub_t, {
.state = &state,
.name = "0x100-0x0200",
.A = 0x100, .B = 0x200, .op = 0b001,
.O = 0xffffff00, .overflow = true,
});
test_op(&sub_t, {
.state = &state,
.name = "0x21-0x9",
.A = 0x21, .B = 0x9, .op = 0b001,
.O = 0x18, .overflow = false, .zero = false,
});
test_op(&sub_t, {
.state = &state,
.name = "0x20-0x20",
.A = 0x20, .B = 0x20, .op = 0b001,
.O = 0x0, .overflow = false, .zero = true,
});
}
{
Tester bitwise_t(&alu_t, "bitwise", true);
// 0x3 = 0b0011, 0x5 = 0b0101
test_op(&bitwise_t, {
.state = &state,
.name = "0x3&0x5",
.A = 0x3, .B = 0x5, .op = 0b100,
.O = 0x1, .zero = false,
});
test_op(&bitwise_t, {
.state = &state,
.name = "0x3|0x5",
.A = 0x3, .B = 0x5, .op = 0b101,
.O = 0x7, .zero = false,
});
test_op(&bitwise_t, {
.state = &state,
.name = "0x3^0x5",
.A = 0x3, .B = 0x5, .op = 0b110,
.O = 0x6, .zero = false,
});
test_op(&bitwise_t, {
.state = &state,
.name = "~0xa5a5a5a5",
.A = 0xa5a5a5a5, .B = 0x0, .op = 0b111,
.O = 0x5a5a5a5a, .zero = false,
});
test_op(&bitwise_t, {
.state = &state,
.name = "~0xffffffff",
.A = 0xffffffff, .B = 0x0, .op = 0b111,
.O = 0x0, .zero = true,
});
}
if (DO_AUTO) {
Tester auto_t(&alu_t, "auto", true);
std::default_random_engine eng;
std::uniform_int_distribution<uint32_t> op_gen(0, 5);
std::uniform_int_distribution<uint32_t> gen(0, 0xffffffff);
for (int i = 0; i < 100; i++) {
uint32_t A = gen(eng);
uint32_t B = gen(eng);
std::string name;
switch (op_gen(eng)) {
case 0: // Add
name.append(fmt_hex(A));
name.append("+");
name.append(fmt_hex(B));
test_op(&auto_t, {
.state = &state,
.name = name,
.A = A, .B = B, .op = 0b000,
.O = A + B, .overflow = (A + B < A), .zero = (A + B == 0),
});
break;
case 1: // Subtract
name.append(fmt_hex(A));
name.append("-");
name.append(fmt_hex(B));
test_op(&auto_t, {
.state = &state,
.name = name,
.A = A, .B = B, .op = 0b001,
.O = A - B, .overflow = (B > A), .zero = (A == B),
});
break;
case 2: // Bitwise AND
name.append(fmt_hex(A));
name.append("&");
name.append(fmt_hex(B));
test_op(&auto_t, {
.state = &state,
.name = name,
.A = A, .B = B, .op = 0b100,
.O = A & B, .overflow = 0, .zero = ((A & B) == 0),
});
break;
case 3: // Bitwise OR
name.append(fmt_hex(A));
name.append("|");
name.append(fmt_hex(B));
test_op(&auto_t, {
.state = &state,
.name = name,
.A = A, .B = B, .op = 0b101,
.O = A | B, .overflow = 0, .zero = ((A | B) == 0),
});
break;
case 4: // Bitwise XOR
name.append(fmt_hex(A));
name.append("^");
name.append(fmt_hex(B));
test_op(&auto_t, {
.state = &state,
.name = name,
.A = A, .B = B, .op = 0b110,
.O = A ^ B, .overflow = 0, .zero = ((A ^ B) == 0),
});
break;
case 5: // Bitwise NOT
name.append("~");
name.append(fmt_hex(A));
test_op(&auto_t, {
.state = &state,
.name = name,
.A = A, .B = B, .op = 0b111,
.O = ~A, .overflow = 0, .zero = (A == 0xffffffff),
});
break;
}
}
}
#ifdef TRACE
state.trace->close();
#endif
}