{-# OPTIONS --without-K --safe #-}
module Algebra.Bundles where
open import Algebra.Core
open import Algebra.Structures
open import Relation.Binary
open import Function.Base
import Relation.Nullary as N
open import Level
record RawMagma c ℓ : Set (suc (c ⊔ ℓ)) where
infixl 7 _∙_
infix 4 _≈_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_∙_ : Op₂ Carrier
infix 4 _≉_
_≉_ : Rel Carrier _
x ≉ y = N.¬ (x ≈ y)
record Magma c ℓ : Set (suc (c ⊔ ℓ)) where
infixl 7 _∙_
infix 4 _≈_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_∙_ : Op₂ Carrier
isMagma : IsMagma _≈_ _∙_
open IsMagma isMagma public
rawMagma : RawMagma _ _
rawMagma = record { _≈_ = _≈_; _∙_ = _∙_ }
open RawMagma rawMagma public
using (_≉_)
record SelectiveMagma c ℓ : Set (suc (c ⊔ ℓ)) where
infixl 7 _∙_
infix 4 _≈_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_∙_ : Op₂ Carrier
isSelectiveMagma : IsSelectiveMagma _≈_ _∙_
open IsSelectiveMagma isSelectiveMagma public
magma : Magma c ℓ
magma = record { isMagma = isMagma }
open Magma magma public using (rawMagma)
record CommutativeMagma c ℓ : Set (suc (c ⊔ ℓ)) where
infixl 7 _∙_
infix 4 _≈_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_∙_ : Op₂ Carrier
isCommutativeMagma : IsCommutativeMagma _≈_ _∙_
open IsCommutativeMagma isCommutativeMagma public
magma : Magma c ℓ
magma = record { isMagma = isMagma }
open Magma magma public using (rawMagma)
record Semigroup c ℓ : Set (suc (c ⊔ ℓ)) where
infixl 7 _∙_
infix 4 _≈_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_∙_ : Op₂ Carrier
isSemigroup : IsSemigroup _≈_ _∙_
open IsSemigroup isSemigroup public
magma : Magma c ℓ
magma = record { isMagma = isMagma }
open Magma magma public
using (_≉_; rawMagma)
record Band c ℓ : Set (suc (c ⊔ ℓ)) where
infixl 7 _∙_
infix 4 _≈_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_∙_ : Op₂ Carrier
isBand : IsBand _≈_ _∙_
open IsBand isBand public
semigroup : Semigroup c ℓ
semigroup = record { isSemigroup = isSemigroup }
open Semigroup semigroup public
using (_≉_; magma; rawMagma)
record CommutativeSemigroup c ℓ : Set (suc (c ⊔ ℓ)) where
infixl 7 _∙_
infix 4 _≈_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_∙_ : Op₂ Carrier
isCommutativeSemigroup : IsCommutativeSemigroup _≈_ _∙_
open IsCommutativeSemigroup isCommutativeSemigroup public
semigroup : Semigroup c ℓ
semigroup = record { isSemigroup = isSemigroup }
open Semigroup semigroup public
using (_≉_; magma; rawMagma)
commutativeMagma : CommutativeMagma c ℓ
commutativeMagma = record { isCommutativeMagma = isCommutativeMagma }
record Semilattice c ℓ : Set (suc (c ⊔ ℓ)) where
infixr 7 _∧_
infix 4 _≈_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_∧_ : Op₂ Carrier
isSemilattice : IsSemilattice _≈_ _∧_
open IsSemilattice isSemilattice public
band : Band c ℓ
band = record { isBand = isBand }
open Band band public
using (_≉_; rawMagma; magma; semigroup)
record RawMonoid c ℓ : Set (suc (c ⊔ ℓ)) where
infixl 7 _∙_
infix 4 _≈_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_∙_ : Op₂ Carrier
ε : Carrier
rawMagma : RawMagma c ℓ
rawMagma = record
{ _≈_ = _≈_
; _∙_ = _∙_
}
open RawMagma rawMagma public
using (_≉_)
record Monoid c ℓ : Set (suc (c ⊔ ℓ)) where
infixl 7 _∙_
infix 4 _≈_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_∙_ : Op₂ Carrier
ε : Carrier
isMonoid : IsMonoid _≈_ _∙_ ε
open IsMonoid isMonoid public
semigroup : Semigroup _ _
semigroup = record { isSemigroup = isSemigroup }
open Semigroup semigroup public
using (_≉_; rawMagma; magma)
rawMonoid : RawMonoid _ _
rawMonoid = record { _≈_ = _≈_; _∙_ = _∙_; ε = ε}
record CommutativeMonoid c ℓ : Set (suc (c ⊔ ℓ)) where
infixl 7 _∙_
infix 4 _≈_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_∙_ : Op₂ Carrier
ε : Carrier
isCommutativeMonoid : IsCommutativeMonoid _≈_ _∙_ ε
open IsCommutativeMonoid isCommutativeMonoid public
monoid : Monoid _ _
monoid = record { isMonoid = isMonoid }
open Monoid monoid public
using (_≉_; rawMagma; magma; semigroup; rawMonoid)
commutativeSemigroup : CommutativeSemigroup _ _
commutativeSemigroup = record { isCommutativeSemigroup = isCommutativeSemigroup }
open CommutativeSemigroup commutativeSemigroup public
using (commutativeMagma)
record IdempotentCommutativeMonoid c ℓ : Set (suc (c ⊔ ℓ)) where
infixl 7 _∙_
infix 4 _≈_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_∙_ : Op₂ Carrier
ε : Carrier
isIdempotentCommutativeMonoid : IsIdempotentCommutativeMonoid _≈_ _∙_ ε
open IsIdempotentCommutativeMonoid isIdempotentCommutativeMonoid public
commutativeMonoid : CommutativeMonoid _ _
commutativeMonoid = record { isCommutativeMonoid = isCommutativeMonoid }
open CommutativeMonoid commutativeMonoid public
using
( _≉_; rawMagma; magma; commutativeMagma; semigroup; commutativeSemigroup
; rawMonoid; monoid
)
BoundedLattice = IdempotentCommutativeMonoid
module BoundedLattice {c ℓ} (idemCommMonoid : IdempotentCommutativeMonoid c ℓ) =
IdempotentCommutativeMonoid idemCommMonoid
record RawGroup c ℓ : Set (suc (c ⊔ ℓ)) where
infix 8 _⁻¹
infixl 7 _∙_
infix 4 _≈_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_∙_ : Op₂ Carrier
ε : Carrier
_⁻¹ : Op₁ Carrier
rawMonoid : RawMonoid c ℓ
rawMonoid = record
{ _≈_ = _≈_
; _∙_ = _∙_
; ε = ε
}
open RawMonoid rawMonoid public
using (_≉_; rawMagma)
record Group c ℓ : Set (suc (c ⊔ ℓ)) where
infix 8 _⁻¹
infixl 7 _∙_
infix 4 _≈_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_∙_ : Op₂ Carrier
ε : Carrier
_⁻¹ : Op₁ Carrier
isGroup : IsGroup _≈_ _∙_ ε _⁻¹
open IsGroup isGroup public
rawGroup : RawGroup _ _
rawGroup = record { _≈_ = _≈_; _∙_ = _∙_; ε = ε; _⁻¹ = _⁻¹}
monoid : Monoid _ _
monoid = record { isMonoid = isMonoid }
open Monoid monoid public
using (_≉_; rawMagma; magma; semigroup; rawMonoid)
record AbelianGroup c ℓ : Set (suc (c ⊔ ℓ)) where
infix 8 _⁻¹
infixl 7 _∙_
infix 4 _≈_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_∙_ : Op₂ Carrier
ε : Carrier
_⁻¹ : Op₁ Carrier
isAbelianGroup : IsAbelianGroup _≈_ _∙_ ε _⁻¹
open IsAbelianGroup isAbelianGroup public
group : Group _ _
group = record { isGroup = isGroup }
open Group group public
using (_≉_; rawMagma; magma; semigroup; monoid; rawMonoid; rawGroup)
commutativeMonoid : CommutativeMonoid _ _
commutativeMonoid = record { isCommutativeMonoid = isCommutativeMonoid }
open CommutativeMonoid commutativeMonoid public
using (commutativeMagma; commutativeSemigroup)
record RawLattice c ℓ : Set (suc (c ⊔ ℓ)) where
infixr 7 _∧_
infixr 6 _∨_
infix 4 _≈_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_∧_ : Op₂ Carrier
_∨_ : Op₂ Carrier
∨-rawMagma : RawMagma c ℓ
∨-rawMagma = record { _≈_ = _≈_; _∙_ = _∨_ }
∧-rawMagma : RawMagma c ℓ
∧-rawMagma = record { _≈_ = _≈_; _∙_ = _∧_ }
open RawMagma ∨-rawMagma public
using (_≉_)
record Lattice c ℓ : Set (suc (c ⊔ ℓ)) where
infixr 7 _∧_
infixr 6 _∨_
infix 4 _≈_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_∨_ : Op₂ Carrier
_∧_ : Op₂ Carrier
isLattice : IsLattice _≈_ _∨_ _∧_
open IsLattice isLattice public
rawLattice : RawLattice c ℓ
rawLattice = record
{ _≈_ = _≈_
; _∧_ = _∧_
; _∨_ = _∨_
}
open RawLattice rawLattice
using (∨-rawMagma; ∧-rawMagma)
setoid : Setoid _ _
setoid = record { isEquivalence = isEquivalence }
open Setoid setoid public
using (_≉_)
record DistributiveLattice c ℓ : Set (suc (c ⊔ ℓ)) where
infixr 7 _∧_
infixr 6 _∨_
infix 4 _≈_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_∨_ : Op₂ Carrier
_∧_ : Op₂ Carrier
isDistributiveLattice : IsDistributiveLattice _≈_ _∨_ _∧_
open IsDistributiveLattice isDistributiveLattice public
lattice : Lattice _ _
lattice = record { isLattice = isLattice }
open Lattice lattice public
using (_≉_; rawLattice; setoid)
record RawNearSemiring c ℓ : Set (suc (c ⊔ ℓ)) where
infixl 7 _*_
infixl 6 _+_
infix 4 _≈_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_+_ : Op₂ Carrier
_*_ : Op₂ Carrier
0# : Carrier
+-rawMonoid : RawMonoid c ℓ
+-rawMonoid = record
{ _≈_ = _≈_
; _∙_ = _+_
; ε = 0#
}
open RawMonoid +-rawMonoid public
using (_≉_) renaming (rawMagma to +-rawMagma)
*-rawMagma : RawMagma c ℓ
*-rawMagma = record
{ _≈_ = _≈_
; _∙_ = _*_
}
record NearSemiring c ℓ : Set (suc (c ⊔ ℓ)) where
infixl 7 _*_
infixl 6 _+_
infix 4 _≈_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_+_ : Op₂ Carrier
_*_ : Op₂ Carrier
0# : Carrier
isNearSemiring : IsNearSemiring _≈_ _+_ _*_ 0#
open IsNearSemiring isNearSemiring public
rawNearSemiring : RawNearSemiring _ _
rawNearSemiring = record
{ _≈_ = _≈_
; _+_ = _+_
; _*_ = _*_
; 0# = 0#
}
+-monoid : Monoid _ _
+-monoid = record { isMonoid = +-isMonoid }
open Monoid +-monoid public
using (_≉_) renaming
( rawMagma to +-rawMagma
; magma to +-magma
; semigroup to +-semigroup
; rawMonoid to +-rawMonoid
)
*-semigroup : Semigroup _ _
*-semigroup = record { isSemigroup = *-isSemigroup }
open Semigroup *-semigroup public
using () renaming
( rawMagma to *-rawMagma
; magma to *-magma
)
record SemiringWithoutOne c ℓ : Set (suc (c ⊔ ℓ)) where
infixl 7 _*_
infixl 6 _+_
infix 4 _≈_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_+_ : Op₂ Carrier
_*_ : Op₂ Carrier
0# : Carrier
isSemiringWithoutOne : IsSemiringWithoutOne _≈_ _+_ _*_ 0#
open IsSemiringWithoutOne isSemiringWithoutOne public
nearSemiring : NearSemiring _ _
nearSemiring = record { isNearSemiring = isNearSemiring }
open NearSemiring nearSemiring public
using
( _≉_; +-rawMagma; +-magma; +-semigroup
; +-rawMonoid; +-monoid
; *-rawMagma; *-magma; *-semigroup
; rawNearSemiring
)
+-commutativeMonoid : CommutativeMonoid _ _
+-commutativeMonoid = record { isCommutativeMonoid = +-isCommutativeMonoid }
open CommutativeMonoid +-commutativeMonoid public
using () renaming
( commutativeMagma to +-commutativeMagma
; commutativeSemigroup to +-commutativeSemigroup
)
record CommutativeSemiringWithoutOne c ℓ : Set (suc (c ⊔ ℓ)) where
infixl 7 _*_
infixl 6 _+_
infix 4 _≈_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_+_ : Op₂ Carrier
_*_ : Op₂ Carrier
0# : Carrier
isCommutativeSemiringWithoutOne :
IsCommutativeSemiringWithoutOne _≈_ _+_ _*_ 0#
open IsCommutativeSemiringWithoutOne
isCommutativeSemiringWithoutOne public
semiringWithoutOne : SemiringWithoutOne _ _
semiringWithoutOne =
record { isSemiringWithoutOne = isSemiringWithoutOne }
open SemiringWithoutOne semiringWithoutOne public
using
( _≉_; +-rawMagma; +-magma; +-semigroup; +-commutativeSemigroup
; *-rawMagma; *-magma; *-semigroup
; +-rawMonoid; +-monoid; +-commutativeMonoid
; nearSemiring; rawNearSemiring
)
record RawSemiring c ℓ : Set (suc (c ⊔ ℓ)) where
infixl 7 _*_
infixl 6 _+_
infix 4 _≈_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_+_ : Op₂ Carrier
_*_ : Op₂ Carrier
0# : Carrier
1# : Carrier
rawNearSemiring : RawNearSemiring c ℓ
rawNearSemiring = record
{ _≈_ = _≈_
; _+_ = _+_
; _*_ = _*_
; 0# = 0#
}
open RawNearSemiring rawNearSemiring public
using (_≉_; +-rawMonoid; +-rawMagma; *-rawMagma)
*-rawMonoid : RawMonoid c ℓ
*-rawMonoid = record
{ _≈_ = _≈_
; _∙_ = _*_
; ε = 1#
}
record SemiringWithoutAnnihilatingZero c ℓ : Set (suc (c ⊔ ℓ)) where
infixl 7 _*_
infixl 6 _+_
infix 4 _≈_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_+_ : Op₂ Carrier
_*_ : Op₂ Carrier
0# : Carrier
1# : Carrier
isSemiringWithoutAnnihilatingZero :
IsSemiringWithoutAnnihilatingZero _≈_ _+_ _*_ 0# 1#
open IsSemiringWithoutAnnihilatingZero
isSemiringWithoutAnnihilatingZero public
rawSemiring : RawSemiring c ℓ
rawSemiring = record
{ _≈_ = _≈_
; _+_ = _+_
; _*_ = _*_
; 0# = 0#
; 1# = 1#
}
open RawSemiring rawSemiring public
using (rawNearSemiring)
+-commutativeMonoid : CommutativeMonoid _ _
+-commutativeMonoid =
record { isCommutativeMonoid = +-isCommutativeMonoid }
open CommutativeMonoid +-commutativeMonoid public
using (_≉_) renaming
( rawMagma to +-rawMagma
; magma to +-magma
; commutativeMagma to +-commutativeMagma
; semigroup to +-semigroup
; commutativeSemigroup to +-commutativeSemigroup
; rawMonoid to +-rawMonoid
; monoid to +-monoid
)
*-monoid : Monoid _ _
*-monoid = record { isMonoid = *-isMonoid }
open Monoid *-monoid public
using () renaming
( rawMagma to *-rawMagma
; magma to *-magma
; semigroup to *-semigroup
; rawMonoid to *-rawMonoid
)
record Semiring c ℓ : Set (suc (c ⊔ ℓ)) where
infixl 7 _*_
infixl 6 _+_
infix 4 _≈_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_+_ : Op₂ Carrier
_*_ : Op₂ Carrier
0# : Carrier
1# : Carrier
isSemiring : IsSemiring _≈_ _+_ _*_ 0# 1#
open IsSemiring isSemiring public
semiringWithoutAnnihilatingZero : SemiringWithoutAnnihilatingZero _ _
semiringWithoutAnnihilatingZero = record
{ isSemiringWithoutAnnihilatingZero =
isSemiringWithoutAnnihilatingZero
}
open SemiringWithoutAnnihilatingZero
semiringWithoutAnnihilatingZero public
using
( _≉_; +-rawMagma; +-magma; +-commutativeMagma; +-semigroup; +-commutativeSemigroup
; *-rawMagma; *-magma; *-semigroup
; +-rawMonoid; +-monoid; +-commutativeMonoid
; *-rawMonoid; *-monoid
; rawNearSemiring ; rawSemiring
)
semiringWithoutOne : SemiringWithoutOne _ _
semiringWithoutOne =
record { isSemiringWithoutOne = isSemiringWithoutOne }
open SemiringWithoutOne semiringWithoutOne public
using (nearSemiring)
record CommutativeSemiring c ℓ : Set (suc (c ⊔ ℓ)) where
infixl 7 _*_
infixl 6 _+_
infix 4 _≈_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_+_ : Op₂ Carrier
_*_ : Op₂ Carrier
0# : Carrier
1# : Carrier
isCommutativeSemiring : IsCommutativeSemiring _≈_ _+_ _*_ 0# 1#
open IsCommutativeSemiring isCommutativeSemiring public
semiring : Semiring _ _
semiring = record { isSemiring = isSemiring }
open Semiring semiring public
using
( _≉_; +-rawMagma; +-magma; +-commutativeMagma; +-semigroup; +-commutativeSemigroup
; *-rawMagma; *-magma; *-semigroup
; +-rawMonoid; +-monoid; +-commutativeMonoid
; *-rawMonoid; *-monoid
; nearSemiring; semiringWithoutOne
; semiringWithoutAnnihilatingZero
; rawSemiring
)
*-commutativeMonoid : CommutativeMonoid _ _
*-commutativeMonoid = record
{ isCommutativeMonoid = *-isCommutativeMonoid
}
open CommutativeMonoid *-commutativeMonoid public
using () renaming
( commutativeMagma to *-commutativeMagma
; commutativeSemigroup to *-commutativeSemigroup
)
commutativeSemiringWithoutOne : CommutativeSemiringWithoutOne _ _
commutativeSemiringWithoutOne = record
{ isCommutativeSemiringWithoutOne = isCommutativeSemiringWithoutOne
}
record CancellativeCommutativeSemiring c ℓ : Set (suc (c ⊔ ℓ)) where
infixl 7 _*_
infixl 6 _+_
infix 4 _≈_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_+_ : Op₂ Carrier
_*_ : Op₂ Carrier
0# : Carrier
1# : Carrier
isCancellativeCommutativeSemiring : IsCancellativeCommutativeSemiring _≈_ _+_ _*_ 0# 1#
open IsCancellativeCommutativeSemiring isCancellativeCommutativeSemiring public
commutativeSemiring : CommutativeSemiring c ℓ
commutativeSemiring = record
{ isCommutativeSemiring = isCommutativeSemiring
}
open CommutativeSemiring commutativeSemiring public
using
( +-rawMagma; +-magma; +-commutativeMagma; +-semigroup; +-commutativeSemigroup
; *-rawMagma; *-magma; *-commutativeMagma; *-semigroup; *-commutativeSemigroup
; +-rawMonoid; +-monoid; +-commutativeMonoid
; *-rawMonoid; *-monoid; *-commutativeMonoid
; nearSemiring; semiringWithoutOne
; semiringWithoutAnnihilatingZero
; rawSemiring
; semiring
; _≉_
)
record RawRing c ℓ : Set (suc (c ⊔ ℓ)) where
infix 8 -_
infixl 7 _*_
infixl 6 _+_
infix 4 _≈_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_+_ : Op₂ Carrier
_*_ : Op₂ Carrier
-_ : Op₁ Carrier
0# : Carrier
1# : Carrier
rawSemiring : RawSemiring c ℓ
rawSemiring = record
{ _≈_ = _≈_
; _+_ = _+_
; _*_ = _*_
; 0# = 0#
; 1# = 1#
}
open RawSemiring rawSemiring public
using
( _≉_
; +-rawMagma; +-rawMonoid
; *-rawMagma; *-rawMonoid
)
+-rawGroup : RawGroup c ℓ
+-rawGroup = record
{ _≈_ = _≈_
; _∙_ = _+_
; ε = 0#
; _⁻¹ = -_
}
record Ring c ℓ : Set (suc (c ⊔ ℓ)) where
infix 8 -_
infixl 7 _*_
infixl 6 _+_
infix 4 _≈_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_+_ : Op₂ Carrier
_*_ : Op₂ Carrier
-_ : Op₁ Carrier
0# : Carrier
1# : Carrier
isRing : IsRing _≈_ _+_ _*_ -_ 0# 1#
open IsRing isRing public
+-abelianGroup : AbelianGroup _ _
+-abelianGroup = record { isAbelianGroup = +-isAbelianGroup }
semiring : Semiring _ _
semiring = record { isSemiring = isSemiring }
open Semiring semiring public
using
( _≉_; +-rawMagma; +-magma; +-commutativeMagma; +-semigroup; +-commutativeSemigroup
; *-rawMagma; *-magma; *-semigroup
; +-rawMonoid; +-monoid ; +-commutativeMonoid
; *-rawMonoid; *-monoid
; nearSemiring; semiringWithoutOne
; semiringWithoutAnnihilatingZero
)
open AbelianGroup +-abelianGroup public
using () renaming (group to +-group)
rawRing : RawRing _ _
rawRing = record
{ _≈_ = _≈_
; _+_ = _+_
; _*_ = _*_
; -_ = -_
; 0# = 0#
; 1# = 1#
}
record CommutativeRing c ℓ : Set (suc (c ⊔ ℓ)) where
infix 8 -_
infixl 7 _*_
infixl 6 _+_
infix 4 _≈_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_+_ : Op₂ Carrier
_*_ : Op₂ Carrier
-_ : Op₁ Carrier
0# : Carrier
1# : Carrier
isCommutativeRing : IsCommutativeRing _≈_ _+_ _*_ -_ 0# 1#
open IsCommutativeRing isCommutativeRing public
ring : Ring _ _
ring = record { isRing = isRing }
open Ring ring public using (_≉_; rawRing; +-group; +-abelianGroup)
commutativeSemiring : CommutativeSemiring _ _
commutativeSemiring =
record { isCommutativeSemiring = isCommutativeSemiring }
open CommutativeSemiring commutativeSemiring public
using
( +-rawMagma; +-magma; +-commutativeMagma; +-semigroup; +-commutativeSemigroup
; *-rawMagma; *-magma; *-commutativeMagma; *-semigroup; *-commutativeSemigroup
; +-rawMonoid; +-monoid; +-commutativeMonoid
; *-rawMonoid; *-monoid; *-commutativeMonoid
; nearSemiring; semiringWithoutOne
; semiringWithoutAnnihilatingZero; semiring
; commutativeSemiringWithoutOne
)
record BooleanAlgebra c ℓ : Set (suc (c ⊔ ℓ)) where
infix 8 ¬_
infixr 7 _∧_
infixr 6 _∨_
infix 4 _≈_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_∨_ : Op₂ Carrier
_∧_ : Op₂ Carrier
¬_ : Op₁ Carrier
⊤ : Carrier
⊥ : Carrier
isBooleanAlgebra : IsBooleanAlgebra _≈_ _∨_ _∧_ ¬_ ⊤ ⊥
open IsBooleanAlgebra isBooleanAlgebra public
distributiveLattice : DistributiveLattice _ _
distributiveLattice = record { isDistributiveLattice = isDistributiveLattice }
open DistributiveLattice distributiveLattice public
using (_≉_; setoid; lattice)
RawSemigroup = RawMagma
{-# WARNING_ON_USAGE RawSemigroup
"Warning: RawSemigroup was deprecated in v1.0.
Please use RawMagma instead."
#-}