cwfs/src/CwF.lagda.md

6.0 KiB
Raw Blame History

open import Cat.Prelude
open import Cat.Diagram.Terminal
open import Fams

module CwF where

Categories with families

A Category with families, written as CwF, is a category in which we can interpret the synax of a type theory. The objects of a CwF are contexts, and morphisms are a list of judgements, which capture the notions of substitution and weakening. For a more detailed introduction to CwFs see the introductory paper by Hoffmann. [1]

This file defines a CwF, as well as type formers for pi types, sigma types, identity types and universes. Here CwFs are defined as a GAT (generalised algebraic theory), as is presented in a paper by Abel, Coquand and Dybjer. [2]

A CwF is defined as a category \mathcal C equipped with a contravariant functor \mathcal F : \mathcal C^{op} \to \mathcal Fam, fufilling the rules of the GAT.

record is-CwF {o h f : Level} (𝓒 : Precategory o h) : Type (lsuc (o ⊔ h ⊔ f)) where
  field
    𝓕 : Functor (𝓒 ^op) (Fams f)

Two functions, Ty and Tm are defined, respectively giving the set of syntactic types, and terms in a context.

  open Precategory 𝓒
  open Functor 𝓕

  Ty : Ob → Set f
  Ty Γ = F₀ Γ .fst 

  Tr : (Γ : Ob) →  Ty Γ  → Set f
  Tr Γ σ = F₀ Γ .snd σ

Which support substitution in syntactic types and terms.

  _⟦_⟧ : {Δ Γ : Ob} →  Ty Γ  → Hom Δ Γ →  Ty Δ 
  A ⟦ γ ⟧ = F₁ γ .fst A

  _[_] : {Δ Γ : Ob} {A :  Ty Γ } (a :  Tr Γ A )
         (γ : Hom Δ Γ) →  Tr Δ (A ⟦ γ ⟧) 
  _[_] {_} {_} {A} a γ = F₁ γ .snd A a

Being defined from a functor, these substitution operators play nicely with composed homs and identities.

  ⟦⟧-compose : {Δ Γ Θ : Ob} {γ : Hom Δ Γ} {δ : Hom Θ Δ} {A :  Ty Γ }
             → A ⟦ γ ∘ δ ⟧ ≡ A ⟦ γ ⟧ ⟦ δ ⟧
  ⟦⟧-compose {_} {_} {_} {γ} {δ} {A} i = F-∘ δ γ i .fst A

  ⟦⟧-id : {Γ : Ob} {A :  Ty Γ }
        → A ⟦ id ⟧ ≡ A
  ⟦⟧-id {Γ} {A} i = F-id i .fst A

Because the type of the syntactic terms depends upon the syntactic types a path over paths is needed for stating that substitution is well behaved on terms.

  []-compose : {Δ Γ Θ : Ob} {γ : Hom Δ Γ} {δ : Hom Θ Δ} {A :  Ty Γ } {a :  Tr Γ A }
             → PathP (λ i →  Tr Θ (F-∘ δ γ i .fst A) ) 
                     (a [ γ ∘ δ ])
                     (a [ γ ] [ δ ])
  []-compose {_} {_} {_} {γ} {δ} {A} {a} i = F-∘ δ γ i .snd A a

  []-id : {Γ : Ob} {A :  Ty Γ } {a :  Tr Γ A }
          → PathP (λ i →  Tr Γ (F-id i .fst A) ) (a [ id ]) a
  []-id {Γ} {A} {a} i = F-id i .snd A a

A CwF has a terminal object representing the empty context.

  field
    terminal : Terminal 𝓒

For any context \Gamma and A \in Ty(\Gamma) there is a context \Gamma,A, extending \Gamma by A.

    _;_ : (Γ : Ob) →  Ty Γ  → Ob

For every \gamma : \Delta \to \Gamma and a \in Tr(\Delta, A \llbracket \gamma \rrbracket) there is a weakened map \langle \gamma , a \rangle : \Delta → \Gamma ; A

    ⟨_,_⟩ : {Γ Δ : Ob} {A :  Ty Γ } (γ : Hom Δ Γ) (a :  Tr Δ (A ⟦ γ ⟧)  )
          → Hom Δ (Γ ; A)

For every context \Gamma and A ∈ Ty(\Gamma) there is a projection map p_{\ \Gamma;A} : \Gamma;A → \Gamma and a syntactic term q_{\ \Gamma;A} : Tr(\Gamma;A, A \llbracket p_{\ \Gamma;A}\rrbracket).

    p : {Γ : Ob} {A :  Ty Γ } → Hom (Γ ; A) Γ
    q : {Γ : Ob} {A :  Ty Γ } →  Tr (Γ ; A) (A ⟦ p ⟧) 

Its required that the map p weakened by q is the identity.

  field
    pq-id : {Γ : Ob} {A :  Ty Γ } → ⟨ p , q ⟩ ≡ id {Γ ; A}

Dubbing p a projection is no coincidence, it projects a map out of a weakened map.

    p-∘ : {Δ Γ : Ob} {γ : Hom Δ Γ} {A :  Ty Γ } (a :  Tr Δ (A ⟦ γ ⟧) )
        → p ∘ ⟨ γ , a ⟩ ≡ γ

Likewise, q “projects” an object out of a weakened substitution.

  q-∘-pathp : {Δ Γ : Ob} {γ : Hom Δ Γ} {A :  Ty Γ } (a :  Tr Δ (A ⟦ γ ⟧) ) 
            →  Tr Δ (F₁ ⟨ γ , a ⟩ .fst (F₁ p .fst A))  Tr Δ (F₁ γ .fst A) 
  q-∘-pathp {Δ} {Γ} {γ} {A} a =
     Tr Δ (F₁ ⟨ γ , a ⟩ .fst (F₁ p .fst A))  ≡⟨ (λ i →  Tr Δ (F-∘ ⟨ γ , a ⟩ p (~ i) .fst A) ) ⟩
     Tr Δ (F₁ (p ∘ ⟨ γ , a ⟩) .fst A)        ≡⟨ (λ i →  Tr Δ (F₁ (p-∘ a i) .fst A) ) ⟩
     Tr Δ (F₁ γ .fst A)                      ∎
              
  field
    q-∘ : {Δ Γ : Ob} {γ : Hom Δ Γ} {A :  Ty Γ } {a :  Tr Δ (A ⟦ γ ⟧) } 
        → PathP (λ i → q-∘-pathp a i) 
                (q [ ⟨ γ , a ⟩ ]) 
                a

The weakening map is also required to play nice with composition.

    ⟨⟩-∘ : {Δ Γ Θ : Ob} {γ : Hom Γ Δ} {δ : Hom Δ Θ} {A :  Ty Θ } {a :  Tr Δ (A ⟦ δ ⟧) }
         → ⟨ δ , a ⟩ ∘ γ 
         ≡ ⟨ δ ∘ γ , transport (λ i →  Tr Γ (F-∘ γ δ (~ i) .fst A) ) (a [ γ ]) ⟩
[1]
Martin Hoffmann, “Syntax and semantics of dependent types,” vol. 4989. pp. 1354, 1997. Available: https://doi.org/10.1007/978-1-4471-0963-1_2
[2]
Andreas Abel, Thierry Coquand, and Peter Dybjer, “On the Algebraic Foundation of Proof Assistants for Intuitionistic Type Theory,” vol. 4989, pp. 313, 2008, Available: http://link.springer.com/10.1007/978-3-540-78969-7_2