kakoune/src/regex_impl.hh

720 lines
23 KiB
C++

#ifndef regex_impl_hh_INCLUDED
#define regex_impl_hh_INCLUDED
#include "exception.hh"
#include "flags.hh"
#include "ref_ptr.hh"
#include "unicode.hh"
#include "utf8.hh"
#include "vector.hh"
#include "utils.hh"
namespace Kakoune
{
struct regex_error : runtime_error
{
using runtime_error::runtime_error;
};
enum class CharacterType : unsigned char
{
None = 0,
Whitespace = 1 << 0,
HorizontalWhitespace = 1 << 1,
Word = 1 << 2,
Digit = 1 << 3,
NotWhitespace = 1 << 4,
NotHorizontalWhitespace = 1 << 5,
NotWord = 1 << 6,
NotDigit = 1 << 7
};
constexpr bool with_bit_ops(Meta::Type<CharacterType>) { return true; }
bool is_ctype(CharacterType ctype, Codepoint cp);
struct CharacterClass
{
struct Range
{
Codepoint min, max;
friend bool operator==(const Range&, const Range&) = default;
};
Vector<Range, MemoryDomain::Regex> ranges;
CharacterType ctypes = CharacterType::None;
bool negative = false;
bool ignore_case = false;
friend bool operator==(const CharacterClass&, const CharacterClass&) = default;
bool matches(Codepoint cp) const
{
if (ignore_case)
cp = to_lower(cp);
for (auto& range : ranges)
{
if (cp < range.min)
break;
else if (cp <= range.max)
return not negative;
}
return (ctypes != CharacterType::None and is_ctype(ctypes, cp)) != negative;
}
};
struct CompiledRegex : RefCountable, UseMemoryDomain<MemoryDomain::Regex>
{
enum Op : char
{
Match,
Literal,
AnyChar,
AnyCharExceptNewLine,
CharClass,
CharType,
Jump,
Split,
Save,
LineAssertion,
SubjectAssertion,
WordBoundary,
LookAround,
};
enum class Lookaround : Codepoint
{
OpBegin = 0xF0000,
AnyChar = 0xF0000,
AnyCharExceptNewLine = 0xF0001,
CharacterClass = 0xF0002,
CharacterType = 0xF8000,
OpEnd = 0xFFFFF,
EndOfLookaround = static_cast<Codepoint>(-1)
};
union Param
{
struct Literal
{
uint32_t codepoint : 24;
bool ignore_case : 1;
} literal;
int16_t character_class_index;
CharacterType character_type;
int16_t jump_target;
int16_t save_index;
struct Split
{
int16_t target;
bool prioritize_parent : 1;
} split;
bool line_start;
bool subject_begin;
bool word_boundary_positive;
struct Lookaround
{
int16_t index;
bool ahead : 1;
bool positive : 1;
bool ignore_case : 1;
} lookaround;
};
static_assert(sizeof(Param) == 4);
struct Instruction
{
Op op;
mutable uint16_t last_step; // mutable as used during execution
Param param;
};
#ifndef __ppc__
static_assert(sizeof(Instruction) == 8);
#endif
explicit operator bool() const { return not instructions.empty(); }
struct NamedCapture
{
String name;
uint32_t index;
};
Vector<Instruction, MemoryDomain::Regex> instructions;
Vector<CharacterClass, MemoryDomain::Regex> character_classes;
Vector<Lookaround, MemoryDomain::Regex> lookarounds;
Vector<NamedCapture, MemoryDomain::Regex> named_captures;
uint32_t first_backward_inst; // -1 if no backward support, 0 if only backward, >0 if both forward and backward
uint32_t save_count;
struct StartDesc : UseMemoryDomain<MemoryDomain::Regex>
{
static constexpr Codepoint count = 128;
static constexpr Codepoint other = 0;
bool map[count];
};
std::unique_ptr<StartDesc> forward_start_desc;
std::unique_ptr<StartDesc> backward_start_desc;
};
String dump_regex(const CompiledRegex& program);
enum class RegexCompileFlags
{
None = 0,
NoSubs = 1 << 0,
Optimize = 1 << 1,
Backward = 1 << 2,
NoForward = 1 << 3,
};
constexpr bool with_bit_ops(Meta::Type<RegexCompileFlags>) { return true; }
CompiledRegex compile_regex(StringView re, RegexCompileFlags flags);
enum class RegexExecFlags
{
None = 0,
NotBeginOfLine = 1 << 1,
NotEndOfLine = 1 << 2,
NotBeginOfWord = 1 << 3,
NotEndOfWord = 1 << 4,
NotInitialNull = 1 << 5,
};
constexpr bool with_bit_ops(Meta::Type<RegexExecFlags>) { return true; }
enum class RegexMode
{
Forward = 1 << 0,
Backward = 1 << 1,
Search = 1 << 2,
AnyMatch = 1 << 3,
NoSaves = 1 << 4,
};
constexpr bool with_bit_ops(Meta::Type<RegexMode>) { return true; }
constexpr bool has_direction(RegexMode mode)
{
return (bool)(mode & RegexMode::Forward) xor
(bool)(mode & RegexMode::Backward);
}
constexpr bool is_direction(RegexMode mode)
{
return has_direction(mode) and
(mode & ~(RegexMode::Forward | RegexMode::Backward)) == RegexMode{0};
}
template<typename It, typename=void>
struct SentinelType { using Type = It; };
template<typename It>
struct SentinelType<It, void_t<typename It::Sentinel>> { using Type = typename It::Sentinel; };
template<typename Iterator, RegexMode mode>
requires (has_direction(mode))
class ThreadedRegexVM
{
public:
ThreadedRegexVM(const CompiledRegex& program)
: m_program{program}
{
kak_assert((forward and program.first_backward_inst != 0) or
(not forward and program.first_backward_inst != -1));
}
ThreadedRegexVM(ThreadedRegexVM&&) = default;
ThreadedRegexVM& operator=(ThreadedRegexVM&&) = default;
ThreadedRegexVM(const ThreadedRegexVM&) = delete;
ThreadedRegexVM& operator=(const ThreadedRegexVM&) = delete;
~ThreadedRegexVM()
{
for (auto* saves : m_saves)
{
for (size_t i = m_program.save_count-1; i > 0; --i)
saves->pos[i].~Iterator();
saves->~Saves();
operator delete(saves);
}
}
bool exec(const Iterator& begin, const Iterator& end,
const Iterator& subject_begin, const Iterator& subject_end,
RegexExecFlags flags)
{
return exec(begin, end, subject_begin, subject_end, flags, []{});
}
bool exec(const Iterator& begin, const Iterator& end,
const Iterator& subject_begin, const Iterator& subject_end,
RegexExecFlags flags, auto&& idle_func)
{
if (flags & RegexExecFlags::NotInitialNull and begin == end)
return false;
constexpr bool search = (mode & RegexMode::Search);
const ExecConfig config{
Sentinel{forward ? begin : end},
Sentinel{forward ? end : begin},
Sentinel{subject_begin},
Sentinel{subject_end},
flags
};
Iterator start = forward ? begin : end;
if (const auto& start_desc = forward ? m_program.forward_start_desc : m_program.backward_start_desc)
{
if (search)
{
to_next_start(start, config, *start_desc);
if (start == config.end) // If start_desc is not null, it means we consume at least one char
return false;
}
else if (start != config.end)
{
const unsigned char c = forward ? *start : *utf8::previous(start, config.end);
if (not start_desc->map[(c < StartDesc::count) ? c : StartDesc::other])
return false;
}
}
return exec_program(std::move(start), config, idle_func);
}
ArrayView<const Iterator> captures() const
{
if (m_captures >= 0)
return { m_saves[m_captures]->pos, m_program.save_count };
return {};
}
private:
struct Saves
{
int16_t refcount;
int16_t next_free;
Iterator pos[1];
};
template<bool copy>
int16_t new_saves(Iterator* pos)
{
kak_assert(not copy or pos != nullptr);
const auto count = m_program.save_count;
if (m_first_free >= 0)
{
const int16_t res = m_first_free;
Saves& saves = *m_saves[res];
m_first_free = saves.next_free;
kak_assert(saves.refcount == 1);
if (copy)
std::copy_n(pos, count, saves.pos);
else
std::fill_n(saves.pos, count, Iterator{});
return res;
}
void* ptr = operator new (sizeof(Saves) + (count-1) * sizeof(Iterator));
Saves* saves = new (ptr) Saves{1, 0, {copy ? pos[0] : Iterator{}}};
for (size_t i = 1; i < count; ++i)
new (&saves->pos[i]) Iterator{copy ? pos[i] : Iterator{}};
m_saves.push_back(saves);
return static_cast<int16_t>(m_saves.size() - 1);
}
void release_saves(int16_t index)
{
if (index < 0)
return;
auto& saves = *m_saves[index];
if (saves.refcount == 1)
{
saves.next_free = m_first_free;
m_first_free = index;
}
else
--saves.refcount;
};
struct alignas(int32_t) Thread
{
int16_t inst;
int16_t saves;
};
using StartDesc = CompiledRegex::StartDesc;
using Sentinel = typename SentinelType<Iterator>::Type;
struct ExecConfig
{
const Sentinel begin;
const Sentinel end;
const Sentinel subject_begin;
const Sentinel subject_end;
const RegexExecFlags flags;
};
// Steps a thread until it consumes the current character, matches or fail
[[gnu::always_inline]]
void step_thread(const Iterator& pos, Codepoint cp, uint16_t current_step, Thread thread, const ExecConfig& config)
{
auto failed = [this, &thread]() {
release_saves(thread.saves);
};
auto consumed = [this, &thread]() {
m_threads.push_next(thread);
};
auto* instructions = m_program.instructions.data();
while (true)
{
auto& inst = instructions[thread.inst++];
// if this instruction was already executed for this step in another thread,
// then this thread is redundant and can be dropped
if (inst.last_step == current_step)
return failed();
inst.last_step = current_step;
switch (inst.op)
{
case CompiledRegex::Match:
if ((pos != config.end and not (mode & RegexMode::Search)) or
(config.flags & RegexExecFlags::NotInitialNull and pos == config.begin))
return failed();
release_saves(m_captures);
m_captures = thread.saves;
m_found_match = true;
// remove lower priority threads
while (not m_threads.current_is_empty())
release_saves(m_threads.pop_current().saves);
return;
case CompiledRegex::Literal:
if (pos != config.end and
inst.param.literal.codepoint == (inst.param.literal.ignore_case ? to_lower(cp) : cp))
return consumed();
return failed();
case CompiledRegex::AnyChar:
return consumed();
case CompiledRegex::AnyCharExceptNewLine:
if (pos != config.end and cp != '\n')
return consumed();
return failed();
case CompiledRegex::Jump:
thread.inst = inst.param.jump_target;
break;
case CompiledRegex::Split:
if (thread.saves >= 0)
++m_saves[thread.saves]->refcount;
if (inst.param.split.prioritize_parent)
m_threads.push_current({inst.param.split.target, thread.saves});
else
{
m_threads.push_current(thread);
thread.inst = inst.param.split.target;
}
break;
case CompiledRegex::Save:
if (mode & RegexMode::NoSaves)
break;
if (thread.saves < 0)
thread.saves = new_saves<false>(nullptr);
else if (m_saves[thread.saves]->refcount > 1)
{
--m_saves[thread.saves]->refcount;
thread.saves = new_saves<true>(m_saves[thread.saves]->pos);
}
m_saves[thread.saves]->pos[inst.param.save_index] = pos;
break;
case CompiledRegex::CharClass:
if (pos == config.end)
return failed();
return m_program.character_classes[inst.param.character_class_index].matches(cp) ? consumed() : failed();
case CompiledRegex::CharType:
if (pos == config.end)
return failed();
return is_ctype(inst.param.character_type, cp) ? consumed() : failed();
case CompiledRegex::LineAssertion:
if (not (inst.param.line_start ? is_line_start(pos, config) : is_line_end(pos, config)))
return failed();
break;
case CompiledRegex::SubjectAssertion:
if (pos != (inst.param.subject_begin ? config.subject_begin : config.subject_end))
return failed();
break;
case CompiledRegex::WordBoundary:
if (is_word_boundary(pos, config) != inst.param.word_boundary_positive)
return failed();
break;
case CompiledRegex::LookAround:
if (lookaround(inst.param.lookaround, pos, config) != inst.param.lookaround.positive)
return failed();
break;
}
}
return failed();
}
bool exec_program(Iterator pos, const ExecConfig& config, auto&& idle_func)
{
kak_assert(m_threads.current_is_empty() and m_threads.next_is_empty());
release_saves(m_captures);
m_captures = -1;
m_threads.ensure_initial_capacity();
const int16_t first_inst = forward ? 0 : m_program.first_backward_inst;
m_threads.push_current({first_inst, -1});
const auto& start_desc = forward ? m_program.forward_start_desc : m_program.backward_start_desc;
constexpr bool search = mode & RegexMode::Search;
constexpr bool any_match = mode & RegexMode::AnyMatch;
uint16_t current_step = -1;
m_found_match = false;
while (true) // Iterate on all codepoints and once at the end
{
if (++current_step == 0)
{
idle_func();
// We wrapped, avoid potential collision on inst.last_step by resetting them
ConstArrayView<CompiledRegex::Instruction> instructions{m_program.instructions};
instructions = forward ? instructions.subrange(0, m_program.first_backward_inst)
: instructions.subrange(m_program.first_backward_inst);
for (auto& inst : instructions)
inst.last_step = 0;
current_step = 1; // step 0 is never valid
}
auto next = pos;
Codepoint cp = pos != config.end ? codepoint(next, config) : -1;
while (not m_threads.current_is_empty())
step_thread(pos, cp, current_step, m_threads.pop_current(), config);
if (pos == config.end or
(m_threads.next_is_empty() and (not search or m_found_match)) or
(m_found_match and any_match))
{
while (not m_threads.next_is_empty())
release_saves(m_threads.pop_next().saves);
return m_found_match;
}
pos = next;
if (search and not m_found_match)
{
if (start_desc and m_threads.next_is_empty())
to_next_start(pos, config, *start_desc);
m_threads.push_next({first_inst, -1});
}
m_threads.swap_next();
}
}
static void to_next_start(Iterator& start, const ExecConfig& config, const StartDesc& start_desc)
{
while (start != config.end)
{
static_assert(StartDesc::count <= 128, "start desc should be ascii only");
if constexpr (forward)
{
const unsigned char c = *start;
if (start_desc.map[(c < StartDesc::count) ? c : StartDesc::other])
return;
utf8::to_next(start, config.end);
}
else
{
auto prev = utf8::previous(start, config.end);
const unsigned char c = *prev;
if (start_desc.map[(c < StartDesc::count) ? c : StartDesc::other])
return;
start = prev;
}
}
}
bool lookaround(CompiledRegex::Param::Lookaround param, Iterator pos, const ExecConfig& config) const
{
using Lookaround = CompiledRegex::Lookaround;
if (not param.ahead)
{
if (pos == config.subject_begin)
return m_program.lookarounds[param.index] == Lookaround::EndOfLookaround;
utf8::to_previous(pos, config.subject_begin);
}
for (auto it = m_program.lookarounds.begin() + param.index; *it != Lookaround::EndOfLookaround; ++it)
{
if (param.ahead and pos == config.subject_end)
return false;
Codepoint cp = utf8::codepoint(pos, config.subject_end);
if (param.ignore_case)
cp = to_lower(cp);
const Lookaround op = *it;
if (op == Lookaround::AnyChar)
{} // any character matches
else if (op == Lookaround::AnyCharExceptNewLine)
{
if (cp == '\n')
return false;
}
else if (op >= Lookaround::CharacterClass and op < Lookaround::CharacterType)
{
auto index = to_underlying(op) - to_underlying(Lookaround::CharacterClass);
if (not m_program.character_classes[index].matches(cp))
return false;
}
else if (op >= Lookaround::CharacterType and op < Lookaround::OpEnd)
{
auto ctype = static_cast<CharacterType>(to_underlying(op) & 0xFF);
if (not is_ctype(ctype, cp))
return false;
}
else if (static_cast<Codepoint>(op) != cp)
return false;
if (not param.ahead and pos == config.subject_begin)
return *++it == Lookaround::EndOfLookaround;
param.ahead ? utf8::to_next(pos, config.subject_end)
: utf8::to_previous(pos, config.subject_begin);
}
return true;
}
static bool is_line_start(const Iterator& pos, const ExecConfig& config)
{
if (pos == config.subject_begin)
return not (config.flags & RegexExecFlags::NotBeginOfLine);
return *(pos-1) == '\n';
}
static bool is_line_end(const Iterator& pos, const ExecConfig& config)
{
if (pos == config.subject_end)
return not (config.flags & RegexExecFlags::NotEndOfLine);
return *pos == '\n';
}
static bool is_word_boundary(const Iterator& pos, const ExecConfig& config)
{
if (pos == config.subject_begin)
return not (config.flags & RegexExecFlags::NotBeginOfWord);
if (pos == config.subject_end)
return not (config.flags & RegexExecFlags::NotEndOfWord);
return is_word(utf8::codepoint(utf8::previous(pos, config.subject_begin), config.subject_end)) !=
is_word(utf8::codepoint(pos, config.subject_end));
}
static Codepoint codepoint(Iterator& it, const ExecConfig& config)
{
if constexpr (forward)
{
return utf8::read_codepoint(it, config.end);
}
else
{
utf8::to_previous(it, config.end);
return utf8::codepoint(it, config.begin);
}
}
const CompiledRegex& m_program;
struct DualThreadStack
{
bool current_is_empty() const { return m_current == m_next_begin; }
bool next_is_empty() const { return m_next_end == m_next_begin; }
void push_current(Thread thread) { m_data[decrement(m_current)] = thread; grow_ifn(true); }
Thread pop_current() { return m_data[post_increment(m_current)]; }
void push_next(Thread thread) { m_data[post_increment(m_next_end)] = thread; grow_ifn(false); }
Thread pop_next() { return m_data[decrement(m_next_end)]; }
void swap_next()
{
m_current = m_next_begin;
m_next_begin = m_next_end;
}
void ensure_initial_capacity()
{
if (m_capacity != 0)
return;
constexpr int32_t initial_capacity = 64 / sizeof(Thread);
static_assert(initial_capacity >= 4);
m_data.reset(new Thread[initial_capacity]);
m_capacity = initial_capacity;
}
void grow_ifn(bool pushed_current)
{
if (m_current != m_next_end)
return;
const auto new_capacity = m_capacity * 2;
Thread* new_data = new Thread[new_capacity];
Thread* old_data = m_data.get();
std::rotate_copy(old_data, old_data + m_current, old_data + m_capacity, new_data);
m_next_begin -= m_current;
if ((pushed_current and m_next_begin == 0) or m_next_begin < 0)
m_next_begin += m_capacity;
m_next_end = m_capacity;
m_current = 0;
m_data.reset(new_data);
m_capacity = new_capacity;
}
private:
int32_t decrement(int32_t& index)
{
if (index == 0)
index = m_capacity;
return --index;
}
int32_t post_increment(int32_t& index)
{
auto res = index;
if (++index == m_capacity)
index = 0;
return res;
}
std::unique_ptr<Thread[]> m_data;
int32_t m_capacity = 0; // Maximum capacity should be 2*instruction count, so 65536
int32_t m_current = 0;
int32_t m_next_begin = 0;
int32_t m_next_end = 0;
};
static constexpr bool forward = mode & RegexMode::Forward;
DualThreadStack m_threads;
Vector<Saves*, MemoryDomain::Regex> m_saves;
int16_t m_first_free = -1;
int16_t m_captures = -1;
bool m_found_match = false;
};
}
#endif // regex_impl_hh_INCLUDED