#ifndef regex_impl_hh_INCLUDED #define regex_impl_hh_INCLUDED #include "exception.hh" #include "flags.hh" #include "ref_ptr.hh" #include "unicode.hh" #include "utf8.hh" #include "utf8_iterator.hh" #include "vector.hh" namespace Kakoune { struct regex_error : runtime_error { using runtime_error::runtime_error; }; enum class MatchDirection { Forward, Backward }; enum class CharacterType : unsigned char { None = 0, Whitespace = 1 << 0, HorizontalWhitespace = 1 << 1, Word = 1 << 2, Digit = 1 << 3, NotWhitespace = 1 << 4, NotHorizontalWhitespace = 1 << 5, NotWord = 1 << 6, NotDigit = 1 << 7 }; constexpr bool with_bit_ops(Meta::Type) { return true; } struct CharacterClass { struct Range { Codepoint min, max; }; Vector ranges; CharacterType ctypes = CharacterType::None; bool negative = false; bool ignore_case = false; }; bool is_character_class(const CharacterClass& character_class, Codepoint cp); bool is_ctype(CharacterType ctype, Codepoint cp); struct CompiledRegex : RefCountable, UseMemoryDomain { enum Op : char { Match, FindNextStart, Literal, Literal_IgnoreCase, AnyChar, Class, CharacterType, Jump, Split_PrioritizeParent, Split_PrioritizeChild, Save, LineStart, LineEnd, WordBoundary, NotWordBoundary, SubjectBegin, SubjectEnd, LookAhead, NegativeLookAhead, LookBehind, NegativeLookBehind, LookAhead_IgnoreCase, NegativeLookAhead_IgnoreCase, LookBehind_IgnoreCase, NegativeLookBehind_IgnoreCase, }; struct Instruction { Op op; // Those mutables are used during execution mutable bool scheduled; mutable uint16_t last_step; uint32_t param; }; static_assert(sizeof(Instruction) == 8, ""); static constexpr uint16_t search_prefix_size = 3; explicit operator bool() const { return not instructions.empty(); } Vector instructions; Vector character_classes; Vector lookarounds; uint32_t first_backward_inst; // -1 if no backward support, 0 if only backward, >0 if both forward and backward uint32_t save_count; struct StartDesc : UseMemoryDomain { static constexpr size_t count = 256; static constexpr Codepoint other = 256; bool map[count+1]; }; std::unique_ptr forward_start_desc; std::unique_ptr backward_start_desc; }; enum class RegexCompileFlags { None = 0, NoSubs = 1 << 0, Optimize = 1 << 1, Backward = 1 << 1, NoForward = 1 << 2, }; constexpr bool with_bit_ops(Meta::Type) { return true; } CompiledRegex compile_regex(StringView re, RegexCompileFlags flags); enum class RegexExecFlags { None = 0, Search = 1 << 0, NotBeginOfLine = 1 << 1, NotEndOfLine = 1 << 2, NotBeginOfWord = 1 << 3, NotEndOfWord = 1 << 4, NotInitialNull = 1 << 5, AnyMatch = 1 << 6, NoSaves = 1 << 7, }; constexpr bool with_bit_ops(Meta::Type) { return true; } template class ThreadedRegexVM { public: ThreadedRegexVM(const CompiledRegex& program) : m_program{program} { kak_assert((direction == MatchDirection::Forward and program.first_backward_inst != 0) or (direction == MatchDirection::Backward and program.first_backward_inst != -1)); } ThreadedRegexVM(const ThreadedRegexVM&) = delete; ThreadedRegexVM& operator=(const ThreadedRegexVM&) = delete; ~ThreadedRegexVM() { for (auto* saves : m_saves) { for (size_t i = m_program.save_count-1; i > 0; --i) saves->pos[i].~Iterator(); saves->~Saves(); operator delete(saves); } } bool exec(Iterator begin, Iterator end, Iterator subject_begin, Iterator subject_end, RegexExecFlags flags) { if (flags & RegexExecFlags::NotInitialNull and begin == end) return false; constexpr bool forward = direction == MatchDirection::Forward; m_begin = EffectiveIt{Utf8It{forward ? begin : end, subject_begin, subject_end}}; m_end = EffectiveIt{Utf8It{forward ? end : begin, subject_begin, subject_end}}; m_subject_begin = EffectiveIt{Utf8It{forward ? subject_begin : subject_end, subject_begin, subject_end}}; m_subject_end = EffectiveIt{Utf8It{forward ? subject_end : subject_begin, subject_begin, subject_end}}; if (forward) m_flags = flags; else // Flip line begin/end flags as we flipped the instructions on compilation. m_flags = (RegexExecFlags)(flags & ~(RegexExecFlags::NotEndOfLine | RegexExecFlags::NotBeginOfLine)) | ((flags & RegexExecFlags::NotEndOfLine) ? RegexExecFlags::NotBeginOfLine : RegexExecFlags::None) | ((flags & RegexExecFlags::NotBeginOfLine) ? RegexExecFlags::NotEndOfLine : RegexExecFlags::None); const bool search = (flags & RegexExecFlags::Search); EffectiveIt start{m_begin}; const auto& start_desc = direction == MatchDirection::Forward ? m_program.forward_start_desc : m_program.backward_start_desc; if (start_desc) { if (search) { to_next_start(start, m_end, *start_desc); if (start == m_end) // If start_desc is not null, it means we consume at least one char return false; } else if (start != m_end and not start_desc->map[std::min(*start, CompiledRegex::StartDesc::other)]) return false; } ConstArrayView instructions{m_program.instructions}; if (direction == MatchDirection::Forward) instructions = instructions.subrange(0, m_program.first_backward_inst); else instructions = instructions.subrange(m_program.first_backward_inst); if (not search) instructions = instructions.subrange(CompiledRegex::search_prefix_size); return exec_program(start, instructions); } ArrayView captures() const { if (m_captures) return { m_captures->pos, m_program.save_count }; return {}; } private: struct Saves { union // ref count when in use, next_free when in free list { int refcount; Saves* next_free; }; Iterator pos[1]; }; template Saves* new_saves(Iterator* pos) { kak_assert(not copy or pos != nullptr); const auto count = m_program.save_count; if (m_first_free != nullptr) { Saves* res = m_first_free; m_first_free = res->next_free; res->refcount = 1; if (copy) std::copy(pos, pos + count, res->pos); else std::fill(res->pos, res->pos + count, Iterator{}); return res; } void* ptr = operator new (sizeof(Saves) + (count-1) * sizeof(Iterator)); Saves* saves = new (ptr) Saves{{1}, {copy ? pos[0] : Iterator{}}}; for (size_t i = 1; i < count; ++i) new (&saves->pos[i]) Iterator{copy ? pos[i] : Iterator{}}; m_saves.push_back(saves); return saves; } void release_saves(Saves* saves) { if (saves and --saves->refcount == 0) { saves->next_free = m_first_free; m_first_free = saves; } }; struct Thread { const CompiledRegex::Instruction* inst; Saves* saves; }; using Utf8It = utf8::iterator; using EffectiveIt = std::conditional_t>; struct ExecState { Vector current_threads; Vector next_threads; uint16_t step = -1; }; enum class StepResult { Consumed, Matched, Failed, FindNextStart }; // Steps a thread until it consumes the current character, matches or fail StepResult step(EffectiveIt& pos, Thread& thread, ExecState& state) { const bool no_saves = (m_flags & RegexExecFlags::NoSaves); auto* instructions = m_program.instructions.data(); while (true) { auto& inst = *thread.inst++; // if this instruction was already executed for this step in another thread, // then this thread is redundant and can be dropped if (inst.last_step == state.step) return StepResult::Failed; inst.last_step = state.step; switch (inst.op) { case CompiledRegex::Literal: if (pos != m_end and inst.param == *pos) return StepResult::Consumed; return StepResult::Failed; case CompiledRegex::Literal_IgnoreCase: if (pos != m_end and inst.param == to_lower(*pos)) return StepResult::Consumed; return StepResult::Failed; case CompiledRegex::AnyChar: return StepResult::Consumed; case CompiledRegex::Jump: thread.inst = instructions + inst.param; break; case CompiledRegex::Split_PrioritizeParent: { if (thread.saves) ++thread.saves->refcount; state.current_threads.push_back({instructions + inst.param, thread.saves}); break; } case CompiledRegex::Split_PrioritizeChild: { if (thread.saves) ++thread.saves->refcount; state.current_threads.push_back({thread.inst, thread.saves}); thread.inst = instructions + inst.param; break; } case CompiledRegex::Save: { if (no_saves) break; if (not thread.saves) thread.saves = new_saves(nullptr); else if (thread.saves->refcount > 1) { --thread.saves->refcount; thread.saves = new_saves(thread.saves->pos); } thread.saves->pos[inst.param] = get_base(pos); break; } case CompiledRegex::Class: if (pos == m_end) return StepResult::Failed; return is_character_class(m_program.character_classes[inst.param], *pos) ? StepResult::Consumed : StepResult::Failed; case CompiledRegex::CharacterType: if (pos == m_end) return StepResult::Failed; return is_ctype((CharacterType)inst.param, *pos) ? StepResult::Consumed : StepResult::Failed;; case CompiledRegex::LineStart: if (not is_line_start(pos)) return StepResult::Failed; break; case CompiledRegex::LineEnd: if (not is_line_end(pos)) return StepResult::Failed; break; case CompiledRegex::WordBoundary: if (not is_word_boundary(pos)) return StepResult::Failed; break; case CompiledRegex::NotWordBoundary: if (is_word_boundary(pos)) return StepResult::Failed; break; case CompiledRegex::SubjectBegin: if (pos != m_subject_begin) return StepResult::Failed; break; case CompiledRegex::SubjectEnd: if (pos != m_subject_end) return StepResult::Failed; break; case CompiledRegex::LookAhead: case CompiledRegex::NegativeLookAhead: if (lookaround(inst.param, pos) != (inst.op == CompiledRegex::LookAhead)) return StepResult::Failed; break; case CompiledRegex::LookAhead_IgnoreCase: case CompiledRegex::NegativeLookAhead_IgnoreCase: if (lookaround(inst.param, pos) != (inst.op == CompiledRegex::LookAhead_IgnoreCase)) return StepResult::Failed; break; case CompiledRegex::LookBehind: case CompiledRegex::NegativeLookBehind: if (lookaround(inst.param, pos) != (inst.op == CompiledRegex::LookBehind)) return StepResult::Failed; break; case CompiledRegex::LookBehind_IgnoreCase: case CompiledRegex::NegativeLookBehind_IgnoreCase: if (lookaround(inst.param, pos) != (inst.op == CompiledRegex::LookBehind_IgnoreCase)) return StepResult::Failed; break; case CompiledRegex::FindNextStart: kak_assert(state.current_threads.empty()); // search thread should by construction be the lower priority one if (state.next_threads.empty()) return StepResult::FindNextStart; return StepResult::Consumed; case CompiledRegex::Match: return StepResult::Matched; } } return StepResult::Failed; } bool exec_program(EffectiveIt pos, ConstArrayView instructions) { ExecState state; state.current_threads.push_back({instructions.begin(), nullptr}); const auto& start_desc = direction == MatchDirection::Forward ? m_program.forward_start_desc : m_program.backward_start_desc; bool found_match = false; while (true) // Iterate on all codepoints and once at the end { if (++state.step == 0) { // We wrapped, avoid potential collision on inst.last_step by resetting them for (auto& inst : instructions) inst.last_step = 0; state.step = 1; // step 0 is never valid } bool find_next_start = false; while (not state.current_threads.empty()) { auto thread = state.current_threads.back(); state.current_threads.pop_back(); switch (step(pos, thread, state)) { case StepResult::Matched: if ((pos != m_end and not (m_flags & RegexExecFlags::Search)) or (m_flags & RegexExecFlags::NotInitialNull and pos == m_begin)) { release_saves(thread.saves); continue; } release_saves(m_captures); m_captures = thread.saves; found_match = true; // remove this and lower priority threads for (auto& t : state.current_threads) release_saves(t.saves); state.current_threads.clear(); break; case StepResult::Failed: release_saves(thread.saves); break; case StepResult::Consumed: if (thread.inst->scheduled) { release_saves(thread.saves); continue; } thread.inst->scheduled = true; state.next_threads.push_back(thread); break; case StepResult::FindNextStart: state.next_threads.push_back(thread); find_next_start = true; break; } } for (auto& thread : state.next_threads) thread.inst->scheduled = false; if (pos == m_end or state.next_threads.empty() or (found_match and (m_flags & RegexExecFlags::AnyMatch))) { for (auto& t : state.next_threads) release_saves(t.saves); return found_match; } std::swap(state.current_threads, state.next_threads); std::reverse(state.current_threads.begin(), state.current_threads.end()); ++pos; if (find_next_start and start_desc) to_next_start(pos, m_end, *start_desc); } } void to_next_start(EffectiveIt& start, const EffectiveIt& end, const CompiledRegex::StartDesc& start_desc) { while (start != end and *start >= 0 and not start_desc.map[std::min(*start, CompiledRegex::StartDesc::other)]) ++start; } template bool lookaround(uint32_t index, EffectiveIt pos) const { const auto end = (look_direction == MatchDirection::Forward ? m_subject_end : m_subject_begin); for (auto it = m_program.lookarounds.begin() + index; *it != -1; ++it) { if (pos == end) return false; Codepoint cp = (look_direction == MatchDirection::Forward ? *pos : *(pos-1)); if (ignore_case) cp = to_lower(cp); const Codepoint ref = *it; if (ref == 0xF000) {} // any character matches else if (ref > 0xF0000 and ref < 0xF8000) { if (not is_character_class(m_program.character_classes[ref - 0xF0001], cp)) return false; } else if (ref >= 0xF8000 and ref <= 0xFFFFD) { if (not is_ctype((CharacterType)(ref & 0xFF), cp)) return false; } else if (ref != cp) return false; (look_direction == MatchDirection::Forward) ? ++pos : --pos; } return true; } bool is_line_start(const EffectiveIt& pos) const { if (pos == m_subject_begin) return not (m_flags & RegexExecFlags::NotBeginOfLine); return *(pos-1) == '\n'; } bool is_line_end(const EffectiveIt& pos) const { if (pos == m_subject_end) return not (m_flags & RegexExecFlags::NotEndOfLine); return *pos == '\n'; } bool is_word_boundary(const EffectiveIt& pos) const { if (pos == m_subject_begin) return not (m_flags & RegexExecFlags::NotBeginOfWord); if (pos == m_subject_end) return not (m_flags & RegexExecFlags::NotEndOfWord); return is_word(*(pos-1)) != is_word(*pos); } static const Iterator& get_base(const Utf8It& it) { return it.base(); } static Iterator get_base(const std::reverse_iterator& it) { return it.base().base(); } const CompiledRegex& m_program; EffectiveIt m_begin; EffectiveIt m_end; EffectiveIt m_subject_begin; EffectiveIt m_subject_end; RegexExecFlags m_flags; Vector m_saves; Saves* m_first_free = nullptr; Saves* m_captures = nullptr; }; } #endif // regex_impl_hh_INCLUDED