#ifndef diff_hh_INCLUDED #define diff_hh_INCLUDED // Implementation of the linear space variant of the algorithm described in // "An O(ND) Difference Algorithm and Its Variations" // (http://xmailserver.org/diff2.pdf) #include "array_view.hh" #include "vector.hh" #include #include namespace Kakoune { struct Snake { int x, y, u, v; enum Op { Add, Del, RevAdd, RevDel } op; }; template Snake find_end_snake_of_further_reaching_dpath(Iterator a, int N, Iterator b, int M, const int* V, const int D, const int k, Equal eq) { const bool add = k == -D or (k != D and V[k-1] < V[k+1]); // if diagonal on the right goes further along x than diagonal on the left, // then we take a vertical edge from it to this diagonal, hence x = V[k+1] // else, we take an horizontal edge from our left diagonal,x = V[k-1]+1 const int x = add ? V[k+1] : V[k-1]+1; // we are by construction on diagonal k, so our position along b (y) is x - k. const int y = x - k; int u = x, v = y; // follow end snake along diagonal k while (u < N and v < M and eq(a[u], b[v])) ++u, ++v; return { x, y, u, v, add ? Snake::Add : Snake::Del }; } template Snake find_middle_snake(Iterator a, int N, Iterator b, int M, int* V1, int* V2, int cost_limit, Equal eq) { const int delta = N - M; V1[1] = 0; V2[1] = 0; std::reverse_iterator ra{a + N}, rb{b + M}; const int max_D = std::min((M + N + 1) / 2 + 1, cost_limit); for (int D = 0; D < max_D; ++D) { for (int k1 = -D; k1 <= D; k1 += 2) { auto p = find_end_snake_of_further_reaching_dpath(a, N, b, M, V1, D, k1, eq); V1[k1] = p.u; const int k2 = -(k1 - delta); if ((delta % 2 != 0) and -(D-1) <= k2 and k2 <= (D-1) and V1[k1] + V2[k2] >= N) return p;// return last snake on forward path, len = (2 * D - 1) } for (int k2 = -D; k2 <= D; k2 += 2) { auto p = find_end_snake_of_further_reaching_dpath(ra, N, rb, M, V2, D, k2, eq); V2[k2] = p.u; const int k1 = -(k2 - delta); if ((delta % 2 == 0) and -D <= k1 and k1 <= D and V1[k1] + V2[k2] >= N) return { N - p.u, M - p.v, N - p.x , M - p.y, (Snake::Op)(p.op + Snake::RevAdd) };// return last snake on reverse path, len = 2 * D } } // We did not find a minimal path in less than max_D iterations, iterate one more time finding the best Snake best{}; for (int k1 = -max_D; k1 <= max_D; k1 += 2) { auto p = find_end_snake_of_further_reaching_dpath(a, N, b, M, V1, max_D, k1, eq); V1[k1] = p.u; if ((delta % 2 != 0) and p.u + p.v >= best.u + best.v and p.u <= N and p.v <= M) best = p; } for (int k2 = -max_D; k2 <= max_D; k2 += 2) { auto p = find_end_snake_of_further_reaching_dpath(ra, N, rb, M, V2, max_D, k2, eq); V2[k2] = p.u; if ((delta % 2 == 0) and p.u + p.v >= best.u + best.v and p.u <= N and p.v <= M) best = {p.x, p.y, p.u, p.v, (Snake::Op)(p.op + Snake::RevAdd)}; } if (best.op >= Snake::RevAdd) best = { N - best.u, M - best.v, N - best.x , M - best.y, best.op }; return best; } struct Diff { enum { Keep, Add, Remove } mode; int len; int posB; }; inline void append_diff(Vector& diffs, Diff diff) { if (diff.len == 0) return; if (not diffs.empty() and diffs.back().mode == diff.mode and (diff.mode != Diff::Add or diffs.back().posB + diffs.back().len == diff.posB)) diffs.back().len += diff.len; else diffs.push_back(diff); } template void find_diff_rec(Iterator a, int begA, int endA, Iterator b, int begB, int endB, int* V1, int* V2, int cost_limit, Equal eq, Vector& diffs) { int prefix_len = 0; while (begA != endA and begB != endB and eq(a[begA], b[begB])) ++begA, ++begB, ++prefix_len; int suffix_len = 0; while (begA != endA and begB != endB and eq(a[endA-1], b[endB-1])) --endA, --endB, ++suffix_len; append_diff(diffs, {Diff::Keep, prefix_len, 0}); const auto lenA = endA - begA, lenB = endB - begB; if (lenA == 0) append_diff(diffs, {Diff::Add, lenB, begB}); else if (lenB == 0) append_diff(diffs, {Diff::Remove, lenA, 0}); else { auto snake = find_middle_snake(a + begA, lenA, b + begB, lenB, V1, V2, cost_limit, eq); kak_assert(snake.u <= lenA and snake.v <= lenB); find_diff_rec(a, begA, begA + snake.x - (int)(snake.op == Snake::Del), b, begB, begB + snake.y - (int)(snake.op == Snake::Add), V1, V2, cost_limit, eq, diffs); if (snake.op == Snake::Add) append_diff(diffs, {Diff::Add, 1, begB + snake.y - 1}); if (snake.op == Snake::Del) append_diff(diffs, {Diff::Remove, 1, 0}); append_diff(diffs, {Diff::Keep, snake.u - snake.x, 0}); if (snake.op == Snake::RevAdd) append_diff(diffs, {Diff::Add, 1, begB + snake.v}); if (snake.op == Snake::RevDel) append_diff(diffs, {Diff::Remove, 1, 0}); find_diff_rec(a, begA + snake.u + (int)(snake.op == Snake::RevDel), endA, b, begB + snake.v + (int)(snake.op == Snake::RevAdd), endB, V1, V2, cost_limit, eq, diffs); } append_diff(diffs, {Diff::Keep, suffix_len, 0}); } template::value_type>> Vector find_diff(Iterator a, int N, Iterator b, int M, Equal eq = Equal{}) { const int max = 2 * (N + M) + 1; Vector data(2*max); Vector diffs; constexpr int cost_limit = 1000; find_diff_rec(a, 0, N, b, 0, M, &data[N+M], &data[max + N+M], cost_limit, eq, diffs); return diffs; } } #endif // diff_hh_INCLUDED