#ifndef diff_hh_INCLUDED #define diff_hh_INCLUDED // Implementation of the linear space variant of the algorithm described in // "An O(ND) Difference Algorithm and Its Variations" // (http://xmailserver.org/diff2.pdf) #include "array_view.hh" #include "vector.hh" #include #include namespace Kakoune { struct Snake{ int x, y, u, v; bool add; }; template Snake find_end_snake_of_further_reaching_dpath(Iterator a, int N, Iterator b, int M, const int* V, const int D, const int k, Equal eq) { const bool add = k == -D or (k != D and V[k-1] < V[k+1]); // if diagonal on the right goes further along x than diagonal on the left, // then we take a vertical edge from it to this diagonal, hence x = V[k+1] // else, we take an horizontal edge from our left diagonal,x = V[k-1]+1 const int x = add ? V[k+1] : V[k-1]+1; // we are by construction on diagonal k, so our position along b (y) is x - k. const int y = x - k; int u = x, v = y; // follow end snake along diagonal k while (u < N and v < M and eq(a[u], b[v])) ++u, ++v; return { x, y, u, v, add }; } struct SnakeLen : Snake { SnakeLen(Snake s, int d) : Snake(s), d(d) {} int d; }; template SnakeLen find_middle_snake(Iterator a, int N, Iterator b, int M, int* V1, int* V2, Equal eq) { const int delta = N - M; V1[1] = 0; V2[1] = 0; std::reverse_iterator ra{a + N}, rb{b + M}; for (int D = 0; D <= (M + N + 1) / 2; ++D) { for (int k1 = -D; k1 <= D; k1 += 2) { auto p = find_end_snake_of_further_reaching_dpath(a, N, b, M, V1, D, k1, eq); V1[k1] = p.u; const int k2 = -(k1 - delta); if ((delta % 2 != 0) and -(D-1) <= k2 and k2 <= (D-1)) { if (V1[k1] + V2[k2] >= N) return { p, 2 * D - 1 };// return last snake on forward path } } for (int k2 = -D; k2 <= D; k2 += 2) { auto p = find_end_snake_of_further_reaching_dpath(ra, N, rb, M, V2, D, k2, eq); V2[k2] = p.u; const int k1 = -(k2 - delta); if ((delta % 2 == 0) and -D <= k1 and k1 <= D) { if (V1[k1] + V2[k2] >= N) return { { N - p.u, M - p.v, N - p.x , M - p.y, p.add } , 2 * D };// return last snake on reverse path } } } kak_assert(false); return { {}, 0 }; } struct Diff { enum { Keep, Add, Remove } mode; int len; int posB; }; inline void append_diff(Vector& diffs, Diff diff) { if (diff.len == 0) return; if (not diffs.empty() and diffs.back().mode == diff.mode and (diff.mode != Diff::Add or diffs.back().posB + diffs.back().len == diff.posB)) diffs.back().len += diff.len; else diffs.push_back(diff); } template void find_diff_rec(Iterator a, int begA, int endA, Iterator b, int begB, int endB, int* V1, int* V2, Equal eq, Vector& diffs) { int prefix_len = 0; while (begA != endA and begB != endB and a[begA] == b[begB]) ++begA, ++begB, ++prefix_len; int suffix_len = 0; while (begA != endA and begB != endB and a[endA-1] == b[endB-1]) --endA, --endB, ++suffix_len; append_diff(diffs, {Diff::Keep, prefix_len, 0}); const auto lenA = endA - begA, lenB = endB - begB; if (lenA == 0) append_diff(diffs, {Diff::Add, lenB, begB}); else if (lenB == 0) append_diff(diffs, {Diff::Remove, lenA, 0}); else { auto snake = find_middle_snake(a + begA, lenA, b + begB, lenB, V1, V2, eq); kak_assert(snake.u <= lenA and snake.v <= lenB); if (snake.d > 1) { find_diff_rec(a, begA, begA + snake.x, b, begB, begB + snake.y, V1, V2, eq, diffs); append_diff(diffs, {Diff::Keep, snake.u - snake.x, 0}); find_diff_rec(a, begA + snake.u, endA, b, begB + snake.v, endB, V1, V2, eq, diffs); } else { if (snake.d == 1) { const int diag = snake.x - (snake.add ? 0 : 1); append_diff(diffs, {Diff::Keep, diag, 0}); if (snake.add) append_diff(diffs, {Diff::Add, 1, begB + diag}); else append_diff(diffs, {Diff::Remove, 1, 0}); } append_diff(diffs, {Diff::Keep, snake.u - snake.x, 0}); } } append_diff(diffs, {Diff::Keep, suffix_len, 0}); } template::value_type>> Vector find_diff(Iterator a, int N, Iterator b, int M, Equal eq = Equal{}) { const int max = 2 * (N + M) + 1; Vector data(2*max); Vector diffs; find_diff_rec(a, 0, N, b, 0, M, &data[N+M], &data[max + N+M], eq, diffs); return diffs; } } #endif // diff_hh_INCLUDED