#include "regex_impl.hh" #include "exception.hh" #include "string.hh" #include "unicode.hh" #include "unit_tests.hh" #include "utf8.hh" #include "utf8_iterator.hh" #include "string_utils.hh" #include "vector.hh" #include namespace Kakoune { constexpr Codepoint CompiledRegex::StartChars::other; struct ParsedRegex { enum Op : char { Literal, AnyChar, Class, CharacterType, Sequence, Alternation, LineStart, LineEnd, WordBoundary, NotWordBoundary, SubjectBegin, SubjectEnd, ResetStart, LookAhead, NegativeLookAhead, LookBehind, NegativeLookBehind, }; struct Quantifier { enum Type : char { One, Optional, RepeatZeroOrMore, RepeatOneOrMore, RepeatMinMax, }; Type type = One; bool greedy = true; int16_t min = -1, max = -1; bool allows_none() const { return type == Quantifier::Optional or type == Quantifier::RepeatZeroOrMore or (type == Quantifier::RepeatMinMax and min <= 0); } bool allows_infinite_repeat() const { return type == Quantifier::RepeatZeroOrMore or type == Quantifier::RepeatOneOrMore or (type == Quantifier::RepeatMinMax and max < 0); }; }; struct Node; using NodeIndex = uint16_t; struct Node { Op op; bool ignore_case; NodeIndex children_end; Codepoint value; Quantifier quantifier; }; Vector nodes; Vector character_classes; size_t capture_count; }; namespace { template bool for_each_child(const ParsedRegex& parsed_regex, ParsedRegex::NodeIndex index, Func&& func) { const auto end = parsed_regex.nodes[index].children_end; for (auto child = index+1; child != end; child = parsed_regex.nodes[child].children_end) { if (func(child) == false) return false; } return true; } template bool for_each_child_reverse(const ParsedRegex& parsed_regex, ParsedRegex::NodeIndex index, Func&& func) { auto find_last_child = [&](ParsedRegex::NodeIndex begin, ParsedRegex::NodeIndex end) { while (parsed_regex.nodes[begin].children_end != end) begin = parsed_regex.nodes[begin].children_end; return begin; }; const auto first_child = index+1; auto end = parsed_regex.nodes[index].children_end; while (end != first_child) { auto child = find_last_child(first_child, end); if (func(child) == false) return false; end = child; } return true; } } // Recursive descent parser based on naming used in the ECMAScript // standard, although the syntax is not fully compatible. struct RegexParser { RegexParser(StringView re) : m_regex{re}, m_pos{re.begin(), re} { m_parsed_regex.capture_count = 1; m_parsed_regex.nodes.reserve((size_t)re.length()); NodeIndex root = disjunction(0); kak_assert(root == 0); } ParsedRegex get_parsed_regex() { return std::move(m_parsed_regex); } static ParsedRegex parse(StringView re) { return RegexParser{re}.get_parsed_regex(); } private: struct InvalidPolicy { Codepoint operator()(Codepoint cp) { throw regex_error{"Invalid utf8 in regex"}; } }; using Iterator = utf8::iterator; using NodeIndex = ParsedRegex::NodeIndex; NodeIndex disjunction(unsigned capture = -1) { NodeIndex index = new_node(ParsedRegex::Alternation); get_node(index).value = capture; while (true) { alternative(); if (at_end() or *m_pos != '|') break; ++m_pos; } get_node(index).children_end = m_parsed_regex.nodes.size(); return index; } NodeIndex alternative(ParsedRegex::Op op = ParsedRegex::Sequence) { NodeIndex index = new_node(op); while (auto t = term()) {} get_node(index).children_end = m_parsed_regex.nodes.size(); return index; } Optional term() { while (modifiers()) // read all modifiers {} if (auto node = assertion()) return node; if (auto node = atom()) { get_node(*node).quantifier = quantifier(); return node; } return {}; } bool accept(StringView expected) { auto it = m_pos.base(); for (auto expected_it = expected.begin(); expected_it != expected.end(); ++expected_it) { if (it == m_regex.end() or *it++ != *expected_it) return false; } m_pos = Iterator{it, m_regex}; return true; } bool modifiers() { if (accept("(?i)")) { m_ignore_case = true; return true; } if (accept("(?I)")) { m_ignore_case = false; return true; } return false; } Optional assertion() { if (at_end()) return {}; switch (*m_pos) { case '^': ++m_pos; return new_node(ParsedRegex::LineStart); case '$': ++m_pos; return new_node(ParsedRegex::LineEnd); case '\\': if (m_pos+1 == m_regex.end()) return {}; switch (*(m_pos+1)) { case 'b': m_pos += 2; return new_node(ParsedRegex::WordBoundary); case 'B': m_pos += 2; return new_node(ParsedRegex::NotWordBoundary); case 'A': m_pos += 2; return new_node(ParsedRegex::SubjectBegin); case 'z': m_pos += 2; return new_node(ParsedRegex::SubjectEnd); case 'K': m_pos += 2; return new_node(ParsedRegex::ResetStart); } break; case '(': { Optional lookaround_op; constexpr struct { StringView prefix; ParsedRegex::Op op; } lookarounds[] = { { "(?=", ParsedRegex::LookAhead }, { "(?!", ParsedRegex::NegativeLookAhead }, { "(?<=", ParsedRegex::LookBehind }, { "(? atom() { if (at_end()) return {}; const Codepoint cp = *m_pos; switch (cp) { case '.': ++m_pos; return new_node(ParsedRegex::AnyChar); case '(': { ++m_pos; const bool capture = not accept("?:"); NodeIndex content = disjunction(capture ? m_parsed_regex.capture_count++ : -1); if (at_end() or *m_pos++ != ')') parse_error("unclosed parenthesis"); return content; } case '\\': ++m_pos; return atom_escape(); case '[': ++m_pos; return character_class(); case '|': case ')': return {}; default: if (contains("^$.*+?[]{}", cp)) parse_error(format("unexpected '{}'", cp)); ++m_pos; return new_node(ParsedRegex::Literal, cp); } } NodeIndex atom_escape() { const Codepoint cp = *m_pos++; if (cp == 'Q') { auto escaped_sequence = new_node(ParsedRegex::Sequence); constexpr StringView end_mark{"\\E"}; auto quote_end = std::search(m_pos.base(), m_regex.end(), end_mark.begin(), end_mark.end()); while (m_pos != quote_end) new_node(ParsedRegex::Literal, *m_pos++); get_node(escaped_sequence).children_end = m_parsed_regex.nodes.size(); if (quote_end != m_regex.end()) m_pos += 2; return escaped_sequence; } // CharacterClassEscape auto class_it = find_if(character_class_escapes, [cp](auto& c) { return c.cp == cp; }); if (class_it != std::end(character_class_escapes)) return new_node(ParsedRegex::CharacterType, (Codepoint)class_it->ctype); // CharacterEscape for (auto& control : control_escapes) { if (control.name == cp) return new_node(ParsedRegex::Literal, control.value); } auto read_hex = [this](size_t count) { Codepoint res = 0; for (int i = 0; i < count; ++i) { if (at_end()) parse_error("unterminated hex sequence"); Codepoint digit = *m_pos++; Codepoint digit_value; if ('0' <= digit and digit <= '9') digit_value = digit - '0'; else if ('a' <= digit and digit <= 'f') digit_value = 0xa + digit - 'a'; else if ('A' <= digit and digit <= 'F') digit_value = 0xa + digit - 'A'; else parse_error(format("invalid hex digit '{}'", digit)); res = res * 16 + digit_value; } return res; }; if (cp == '0') return new_node(ParsedRegex::Literal, '\0'); else if (cp == 'c') { if (at_end()) parse_error("unterminated control escape"); Codepoint ctrl = *m_pos++; if (('a' <= ctrl and ctrl <= 'z') or ('A' <= ctrl and ctrl <= 'Z')) return new_node(ParsedRegex::Literal, ctrl % 32); parse_error(format("Invalid control escape character '{}'", ctrl)); } else if (cp == 'x') return new_node(ParsedRegex::Literal, read_hex(2)); else if (cp == 'u') return new_node(ParsedRegex::Literal, read_hex(4)); if (contains("^$\\.*+?()[]{}|", cp)) // SyntaxCharacter return new_node(ParsedRegex::Literal, cp); parse_error(format("unknown atom escape '{}'", cp)); } void normalize_ranges(Vector& ranges) { if (ranges.empty()) return; // Sort ranges so that we can use binary search std::sort(ranges.begin(), ranges.end(), [](auto& lhs, auto& rhs) { return lhs.min < rhs.min; }); // merge overlapping ranges auto pos = ranges.begin(); for (auto next = pos+1; next != ranges.end(); ++next) { if (pos->max + 1 >= next->min) { if (next->max > pos->max) pos->max = next->max; } else *++pos = *next; } ranges.erase(pos+1, ranges.end()); } NodeIndex character_class() { CharacterClass character_class; character_class.ignore_case = m_ignore_case; character_class.negative = m_pos != m_regex.end() and *m_pos == '^'; if (character_class.negative) ++m_pos; while (m_pos != m_regex.end() and *m_pos != ']') { auto cp = *m_pos++; if (cp == '-') { character_class.ranges.push_back({ '-', '-' }); continue; } if (at_end()) break; if (cp == '\\') { auto it = find_if(character_class_escapes, [cp = *m_pos](auto& t) { return t.cp == cp; }); if (it != std::end(character_class_escapes)) { character_class.ctypes |= it->ctype; ++m_pos; continue; } else // its just an escaped character { cp = *m_pos++; for (auto& control : control_escapes) { if (control.name == cp) { cp = control.value; break; } } } } CharacterClass::Range range = { cp, cp }; if (*m_pos == '-') { if (++m_pos == m_regex.end()) break; if (*m_pos != ']') { range.max = *m_pos++; if (range.min > range.max) parse_error("invalid range specified"); } else { character_class.ranges.push_back(range); range = { '-', '-' }; } } character_class.ranges.push_back(range); } if (at_end()) parse_error("unclosed character class"); ++m_pos; if (m_ignore_case) { for (auto& range : character_class.ranges) { range.min = to_lower(range.min); range.max = to_lower(range.max); } } normalize_ranges(character_class.ranges); // Optimize the relatively common case of using a character class to // escape a character, such as [*] if (character_class.ctypes == CharacterType::None and not character_class.negative and character_class.ranges.size() == 1 and character_class.ranges.front().min == character_class.ranges.front().max) return new_node(ParsedRegex::Literal, character_class.ranges.front().min); if (character_class.ctypes != CharacterType::None and not character_class.negative and character_class.ranges.empty()) return new_node(ParsedRegex::CharacterType, (Codepoint)character_class.ctypes); auto class_id = m_parsed_regex.character_classes.size(); m_parsed_regex.character_classes.push_back(std::move(character_class)); return new_node(ParsedRegex::Class, class_id); } ParsedRegex::Quantifier quantifier() { if (at_end()) return {ParsedRegex::Quantifier::One}; constexpr int max_repeat = 1000; auto read_bound = [max_repeat, this](auto& pos, auto begin, auto end) { int16_t res = 0; for (; pos != end; ++pos) { const auto cp = *pos; if (cp < '0' or cp > '9') return pos == begin ? (int16_t)-1 : res; res = res * 10 + cp - '0'; if (res > max_repeat) parse_error(format("Explicit quantifier is too big, maximum is {}", max_repeat)); } return res; }; auto check_greedy = [&]() { if (at_end() or *m_pos != '?') return true; ++m_pos; return false; }; switch (*m_pos) { case '*': ++m_pos; return {ParsedRegex::Quantifier::RepeatZeroOrMore, check_greedy()}; case '+': ++m_pos; return {ParsedRegex::Quantifier::RepeatOneOrMore, check_greedy()}; case '?': ++m_pos; return {ParsedRegex::Quantifier::Optional, check_greedy()}; case '{': { auto it = m_pos+1; const int16_t min = read_bound(it, it, m_regex.end()); int16_t max = min; if (*it == ',') { ++it; max = read_bound(it, it, m_regex.end()); } if (*it++ != '}') parse_error("expected closing bracket"); m_pos = it; return {ParsedRegex::Quantifier::RepeatMinMax, check_greedy(), min, max}; } default: return {ParsedRegex::Quantifier::One}; } } NodeIndex new_node(ParsedRegex::Op op, Codepoint value = -1, ParsedRegex::Quantifier quantifier = {ParsedRegex::Quantifier::One}) { constexpr auto max_nodes = std::numeric_limits::max(); const NodeIndex res = m_parsed_regex.nodes.size(); if (res == max_nodes) parse_error(format("regex parsed to more than {} ast nodes", max_nodes)); const NodeIndex next = res+1; m_parsed_regex.nodes.push_back({op, m_ignore_case, next, value, quantifier}); return res; } bool at_end() const { return m_pos == m_regex.end(); } ParsedRegex::Node& get_node(NodeIndex index) { return m_parsed_regex.nodes[index]; } [[gnu::noreturn]] void parse_error(StringView error) const { throw regex_error(format("regex parse error: {} at '{}<<>>{}'", error, StringView{m_regex.begin(), m_pos.base()}, StringView{m_pos.base(), m_regex.end()})); } void validate_lookaround(NodeIndex index) { for_each_child(m_parsed_regex, index, [this](NodeIndex child_index) { auto& child = get_node(child_index); if (child.op != ParsedRegex::Literal and child.op != ParsedRegex::Class and child.op != ParsedRegex::CharacterType and child.op != ParsedRegex::AnyChar) parse_error("Lookaround can only contain literals, any chars or character classes"); if (child.quantifier.type != ParsedRegex::Quantifier::One) parse_error("Quantifiers cannot be used in lookarounds"); return true; }); } ParsedRegex m_parsed_regex; StringView m_regex; Iterator m_pos; bool m_ignore_case = false; static constexpr struct CharacterClassEscape { Codepoint cp; CharacterType ctype; } character_class_escapes[] = { { 'd', CharacterType::Digit }, { 'D', CharacterType::NotDigit }, { 'w', CharacterType::Word }, { 'W', CharacterType::NotWord }, { 's', CharacterType::Whitespace }, { 'S', CharacterType::NotWhitespace }, { 'h', CharacterType::HorizontalWhitespace }, { 'H', CharacterType::NotHorizontalWhitespace }, }; static constexpr struct ControlEscape { Codepoint name; Codepoint value; } control_escapes[] = { { 'f', '\f' }, { 'n', '\n' }, { 'r', '\r' }, { 't', '\t' }, { 'v', '\v' } }; }; constexpr RegexParser::CharacterClassEscape RegexParser::character_class_escapes[]; constexpr RegexParser::ControlEscape RegexParser::control_escapes[]; struct RegexCompiler { RegexCompiler(ParsedRegex&& parsed_regex, RegexCompileFlags flags, MatchDirection direction) : m_parsed_regex{parsed_regex}, m_flags(flags), m_forward{direction == MatchDirection::Forward} { // Approximation of the number of instructions generated m_program.instructions.reserve(CompiledRegex::search_prefix_size + parsed_regex.nodes.size() + 1); m_program.start_chars = compute_start_chars(); write_search_prefix(); compile_node(0); push_inst(CompiledRegex::Match); m_program.character_classes = std::move(m_parsed_regex.character_classes); m_program.save_count = m_parsed_regex.capture_count * 2; m_program.direction = direction; } CompiledRegex get_compiled_regex() { return std::move(m_program); } private: uint32_t compile_node_inner(ParsedRegex::NodeIndex index) { auto& node = get_node(index); const uint32_t start_pos = (uint32_t)m_program.instructions.size(); const bool ignore_case = node.ignore_case; const bool save = (node.op == ParsedRegex::Alternation or node.op == ParsedRegex::Sequence) and (node.value == 0 or (node.value != -1 and not (m_flags & RegexCompileFlags::NoSubs))); if (save) push_inst(CompiledRegex::Save, node.value * 2 + (m_forward ? 0 : 1)); Vector goto_inner_end_offsets; switch (node.op) { case ParsedRegex::Literal: if (ignore_case) push_inst(CompiledRegex::Literal_IgnoreCase, to_lower(node.value)); else push_inst(CompiledRegex::Literal, node.value); break; case ParsedRegex::AnyChar: push_inst(CompiledRegex::AnyChar); break; case ParsedRegex::Class: push_inst(CompiledRegex::Class, node.value); break; case ParsedRegex::CharacterType: push_inst(CompiledRegex::CharacterType, node.value); break; case ParsedRegex::Sequence: { if (m_forward) for_each_child(m_parsed_regex, index, [this](ParsedRegex::NodeIndex child) { compile_node(child); return true; }); else for_each_child_reverse(m_parsed_regex, index, [this](ParsedRegex::NodeIndex child) { compile_node(child); return true; }); break; } case ParsedRegex::Alternation: { auto split_pos = m_program.instructions.size(); for_each_child(m_parsed_regex, index, [this, index](ParsedRegex::NodeIndex child) { if (child != index+1) push_inst(CompiledRegex::Split_PrioritizeParent); return true; }); for_each_child(m_parsed_regex, index, [&, end = node.children_end](ParsedRegex::NodeIndex child) { auto node = compile_node(child); if (child != index+1) m_program.instructions[split_pos++].param = node; if (get_node(child).children_end != end) { auto jump = push_inst(CompiledRegex::Jump); goto_inner_end_offsets.push_back(jump); } return true; }); break; } case ParsedRegex::LookAhead: push_inst(m_forward ? (ignore_case ? CompiledRegex::LookAhead_IgnoreCase : CompiledRegex::LookAhead) : (ignore_case ? CompiledRegex::LookBehind_IgnoreCase : CompiledRegex::LookBehind), push_lookaround(index, false, ignore_case)); break; case ParsedRegex::NegativeLookAhead: push_inst(m_forward ? (ignore_case ? CompiledRegex::NegativeLookAhead_IgnoreCase : CompiledRegex::NegativeLookAhead) : (ignore_case ? CompiledRegex::NegativeLookBehind_IgnoreCase : CompiledRegex::NegativeLookBehind), push_lookaround(index, false, ignore_case)); break; case ParsedRegex::LookBehind: push_inst(m_forward ? (ignore_case ? CompiledRegex::LookBehind_IgnoreCase : CompiledRegex::LookBehind) : (ignore_case ? CompiledRegex::LookAhead_IgnoreCase : CompiledRegex::LookAhead), push_lookaround(index, true, ignore_case)); break; case ParsedRegex::NegativeLookBehind: push_inst(m_forward ? (ignore_case ? CompiledRegex::NegativeLookBehind_IgnoreCase : CompiledRegex::NegativeLookBehind) : (ignore_case ? CompiledRegex::NegativeLookAhead_IgnoreCase : CompiledRegex::NegativeLookAhead), push_lookaround(index, true, ignore_case)); break; case ParsedRegex::LineStart: push_inst(m_forward ? CompiledRegex::LineStart : CompiledRegex::LineEnd); break; case ParsedRegex::LineEnd: push_inst(m_forward ? CompiledRegex::LineEnd : CompiledRegex::LineStart); break; case ParsedRegex::WordBoundary: push_inst(CompiledRegex::WordBoundary); break; case ParsedRegex::NotWordBoundary: push_inst(CompiledRegex::NotWordBoundary); break; case ParsedRegex::SubjectBegin: push_inst(m_forward ? CompiledRegex::SubjectBegin : CompiledRegex::SubjectEnd); break; case ParsedRegex::SubjectEnd: push_inst(m_forward ? CompiledRegex::SubjectEnd : CompiledRegex::SubjectBegin); break; case ParsedRegex::ResetStart: push_inst(CompiledRegex::Save, 0); break; } for (auto& offset : goto_inner_end_offsets) m_program.instructions[offset].param = m_program.instructions.size(); if (save) push_inst(CompiledRegex::Save, node.value * 2 + (m_forward ? 1 : 0)); return start_pos; } uint32_t compile_node(ParsedRegex::NodeIndex index) { auto& node = get_node(index); const uint32_t start_pos = (uint32_t)m_program.instructions.size(); Vector goto_ends; auto& quantifier = node.quantifier; // TODO reverse, invert the way we write optional quantifiers ? if (quantifier.allows_none()) { auto split_pos = push_inst(quantifier.greedy ? CompiledRegex::Split_PrioritizeParent : CompiledRegex::Split_PrioritizeChild); goto_ends.push_back(split_pos); } auto inner_pos = compile_node_inner(index); // Write the node multiple times when we have a min count quantifier for (int i = 1; i < quantifier.min; ++i) inner_pos = compile_node_inner(index); if (quantifier.allows_infinite_repeat()) push_inst(quantifier.greedy ? CompiledRegex::Split_PrioritizeChild : CompiledRegex::Split_PrioritizeParent, inner_pos); // Write the node as an optional match for the min -> max counts else for (int i = std::max((int16_t)1, quantifier.min); // STILL UGLY ! i < quantifier.max; ++i) { auto split_pos = push_inst(quantifier.greedy ? CompiledRegex::Split_PrioritizeParent : CompiledRegex::Split_PrioritizeChild); goto_ends.push_back(split_pos); compile_node_inner(index); } for (auto offset : goto_ends) m_program.instructions[offset].param = m_program.instructions.size(); return start_pos; } // Add an set of instruction prefix used in the search use case void write_search_prefix() { kak_assert(m_program.instructions.empty()); push_inst(CompiledRegex::Split_PrioritizeChild, CompiledRegex::search_prefix_size); push_inst(CompiledRegex::FindNextStart); push_inst(CompiledRegex::Split_PrioritizeParent, 1); kak_assert(m_program.instructions.size() == CompiledRegex::search_prefix_size); } uint32_t push_inst(CompiledRegex::Op op, uint32_t param = 0) { constexpr auto max_instructions = std::numeric_limits::max(); uint32_t res = m_program.instructions.size(); if (res > max_instructions) throw regex_error(format("regex compiled to more than {} instructions", max_instructions)); m_program.instructions.push_back({ op, false, 0, param }); return res; } uint32_t push_lookaround(ParsedRegex::NodeIndex index, bool reversed, bool ignore_case) { uint32_t res = m_program.lookarounds.size(); auto write_matcher = [this, ignore_case](ParsedRegex::NodeIndex child) { auto& character = get_node(child); if (character.op == ParsedRegex::Literal) m_program.lookarounds.push_back(ignore_case ? to_lower(character.value) : character.value); else if (character.op == ParsedRegex::AnyChar) m_program.lookarounds.push_back(0xF000); else if (character.op == ParsedRegex::Class) m_program.lookarounds.push_back(0xF0001 + character.value); else if (character.op == ParsedRegex::CharacterType) m_program.lookarounds.push_back(0xF8000 | character.value); else kak_assert(false); return true; }; if (reversed) for_each_child_reverse(m_parsed_regex, index, write_matcher); else for_each_child(m_parsed_regex, index, write_matcher); m_program.lookarounds.push_back((Codepoint)-1); return res; } // Fills accepted and rejected according to which chars can start the given node, // returns true if the node did not consume the char, hence a following node in // sequence would be still relevant for the parent node start chars computation. bool compute_start_chars(ParsedRegex::NodeIndex index, CompiledRegex::StartChars& start_chars) const { auto& node = get_node(index); switch (node.op) { case ParsedRegex::Literal: if (node.value < CompiledRegex::StartChars::count) { if (node.ignore_case) { start_chars.map[to_lower(node.value)] = true; start_chars.map[to_upper(node.value)] = true; } else start_chars.map[node.value] = true; } else start_chars.map[CompiledRegex::StartChars::other] = true; return node.quantifier.allows_none(); case ParsedRegex::AnyChar: for (auto& b : start_chars.map) b = true; start_chars.map[CompiledRegex::StartChars::other] = true; return node.quantifier.allows_none(); case ParsedRegex::Class: { auto& character_class = m_parsed_regex.character_classes[node.value]; for (Codepoint cp = 0; cp < CompiledRegex::StartChars::count; ++cp) { if (is_character_class(character_class, cp)) start_chars.map[cp] = true; } start_chars.map[CompiledRegex::StartChars::other] = true; return node.quantifier.allows_none(); } case ParsedRegex::CharacterType: { const CharacterType ctype = (CharacterType)node.value; for (Codepoint cp = 0; cp < CompiledRegex::StartChars::other; ++cp) { if (is_ctype(ctype, cp)) start_chars.map[cp] = true; } start_chars.map[CompiledRegex::StartChars::other] = true; return node.quantifier.allows_none(); } case ParsedRegex::Sequence: { bool did_not_consume = false; auto does_not_consume = [&, this](auto child) { return this->compute_start_chars(child, start_chars); }; if (m_forward) did_not_consume = for_each_child(m_parsed_regex, index, does_not_consume); else did_not_consume = for_each_child_reverse(m_parsed_regex, index, does_not_consume); return did_not_consume or node.quantifier.allows_none(); } case ParsedRegex::Alternation: { bool all_consumed = not node.quantifier.allows_none(); for_each_child(m_parsed_regex, index, [&](ParsedRegex::NodeIndex child) { if (compute_start_chars(child, start_chars)) all_consumed = false; return true; }); return not all_consumed; } case ParsedRegex::LineStart: case ParsedRegex::LineEnd: case ParsedRegex::WordBoundary: case ParsedRegex::NotWordBoundary: case ParsedRegex::SubjectBegin: case ParsedRegex::SubjectEnd: case ParsedRegex::ResetStart: case ParsedRegex::LookAhead: case ParsedRegex::LookBehind: case ParsedRegex::NegativeLookAhead: case ParsedRegex::NegativeLookBehind: return true; } return false; } [[gnu::noinline]] std::unique_ptr compute_start_chars() const { CompiledRegex::StartChars start_chars{}; if (compute_start_chars(0, start_chars) or not contains(start_chars.map, false)) return nullptr; return std::make_unique(start_chars); } const ParsedRegex::Node& get_node(ParsedRegex::NodeIndex index) const { return m_parsed_regex.nodes[index]; } CompiledRegex m_program; RegexCompileFlags m_flags; ParsedRegex& m_parsed_regex; const bool m_forward; }; void dump_regex(const CompiledRegex& program) { int count = 0; for (auto& inst : program.instructions) { printf(" %03d ", count++); switch (inst.op) { case CompiledRegex::Literal: printf("literal %lc\n", inst.param); break; case CompiledRegex::Literal_IgnoreCase: printf("literal (ignore case) %lc\n", inst.param); break; case CompiledRegex::AnyChar: printf("any char\n"); break; case CompiledRegex::Jump: printf("jump %u\n", inst.param); break; case CompiledRegex::Split_PrioritizeParent: case CompiledRegex::Split_PrioritizeChild: { printf("split (prioritize %s) %u\n", inst.op == CompiledRegex::Split_PrioritizeParent ? "parent" : "child", inst.param); break; } case CompiledRegex::Save: printf("save %d\n", inst.param); break; case CompiledRegex::Class: printf("class %d\n", inst.param); break; case CompiledRegex::CharacterType: printf("character type %d\n", inst.param); break; case CompiledRegex::LineStart: printf("line start\n"); break; case CompiledRegex::LineEnd: printf("line end\n"); break; case CompiledRegex::WordBoundary: printf("word boundary\n"); break; case CompiledRegex::NotWordBoundary: printf("not word boundary\n"); break; case CompiledRegex::SubjectBegin: printf("subject begin\n"); break; case CompiledRegex::SubjectEnd: printf("subject end\n"); break; case CompiledRegex::LookAhead: case CompiledRegex::NegativeLookAhead: case CompiledRegex::LookBehind: case CompiledRegex::NegativeLookBehind: case CompiledRegex::LookAhead_IgnoreCase: case CompiledRegex::NegativeLookAhead_IgnoreCase: case CompiledRegex::LookBehind_IgnoreCase: case CompiledRegex::NegativeLookBehind_IgnoreCase: { const char* name = nullptr; if (inst.op == CompiledRegex::LookAhead) name = "look ahead"; if (inst.op == CompiledRegex::NegativeLookAhead) name = "negative look ahead"; if (inst.op == CompiledRegex::LookBehind) name = "look behind"; if (inst.op == CompiledRegex::NegativeLookBehind) name = "negative look behind"; if (inst.op == CompiledRegex::LookAhead_IgnoreCase) name = "look ahead (ignore case)"; if (inst.op == CompiledRegex::NegativeLookAhead_IgnoreCase) name = "negative look ahead (ignore case)"; if (inst.op == CompiledRegex::LookBehind_IgnoreCase) name = "look behind (ignore case)"; if (inst.op == CompiledRegex::NegativeLookBehind_IgnoreCase) name = "negative look behind (ignore case)"; String str; for (auto it = program.lookarounds.begin() + inst.param; *it != -1; ++it) utf8::dump(std::back_inserter(str), *it); printf("%s (%s)\n", name, str.c_str()); break; } case CompiledRegex::FindNextStart: printf("find next start\n"); break; case CompiledRegex::Match: printf("match\n"); } } } CompiledRegex compile_regex(StringView re, RegexCompileFlags flags, MatchDirection direction) { return RegexCompiler{RegexParser::parse(re), flags, direction}.get_compiled_regex(); } bool is_character_class(const CharacterClass& character_class, Codepoint cp) { if (character_class.ignore_case) cp = to_lower(cp); auto it = std::lower_bound(character_class.ranges.begin(), character_class.ranges.end(), cp, [](auto& range, Codepoint cp) { return range.max < cp; }); auto found = (it != character_class.ranges.end() and it->min <= cp) or is_ctype(character_class.ctypes, cp); return found != character_class.negative; } bool is_ctype(CharacterType ctype, Codepoint cp) { return ((ctype & CharacterType::Whitespace) and is_blank(cp)) or ((ctype & CharacterType::HorizontalWhitespace) and is_horizontal_blank(cp)) or ((ctype & CharacterType::Digit) and iswdigit(cp)) or ((ctype & CharacterType::Word) and is_word(cp)) or ((ctype & CharacterType::NotWhitespace) and not is_blank(cp)) or ((ctype & CharacterType::NotHorizontalWhitespace) and not is_horizontal_blank(cp)) or ((ctype & CharacterType::NotDigit) and not iswdigit(cp)) or ((ctype & CharacterType::NotWord) and not is_word(cp)); } namespace { template struct TestVM : CompiledRegex, ThreadedRegexVM { using VMType = ThreadedRegexVM; TestVM(StringView re, bool dump = false) : CompiledRegex{compile_regex(re, RegexCompileFlags::None, dir)}, VMType{(const CompiledRegex&)*this} { if (dump) dump_regex(*this); } bool exec(StringView re, RegexExecFlags flags = RegexExecFlags::AnyMatch) { return VMType::exec(re.begin(), re.end(), flags); } }; } auto test_regex = UnitTest{[]{ { TestVM<> vm{R"(a*b)"}; kak_assert(vm.exec("b")); kak_assert(vm.exec("ab")); kak_assert(vm.exec("aaab")); kak_assert(not vm.exec("acb")); kak_assert(not vm.exec("abc")); kak_assert(not vm.exec("")); } { TestVM<> vm{R"(^a.*b$)"}; kak_assert(vm.exec("afoob")); kak_assert(vm.exec("ab")); kak_assert(not vm.exec("bab")); kak_assert(not vm.exec("")); } { TestVM<> vm{R"(^(foo|qux|baz)+(bar)?baz$)"}; kak_assert(vm.exec("fooquxbarbaz")); kak_assert(StringView{vm.captures()[2], vm.captures()[3]} == "qux"); kak_assert(not vm.exec("fooquxbarbaze")); kak_assert(not vm.exec("quxbar")); kak_assert(not vm.exec("blahblah")); kak_assert(vm.exec("bazbaz")); kak_assert(vm.exec("quxbaz")); } { TestVM<> vm{R"(.*\b(foo|bar)\b.*)"}; kak_assert(vm.exec("qux foo baz")); kak_assert(StringView{vm.captures()[2], vm.captures()[3]} == "foo"); kak_assert(not vm.exec("quxfoobaz")); kak_assert(vm.exec("bar")); kak_assert(not vm.exec("foobar")); } { TestVM<> vm{R"((foo|bar))"}; kak_assert(vm.exec("foo")); kak_assert(vm.exec("bar")); kak_assert(not vm.exec("foobar")); } { TestVM<> vm{R"(a{3,5}b)"}; kak_assert(not vm.exec("aab")); kak_assert(vm.exec("aaab")); kak_assert(not vm.exec("aaaaaab")); kak_assert(vm.exec("aaaaab")); } { TestVM<> vm{R"(a{3}b)"}; kak_assert(not vm.exec("aab")); kak_assert(vm.exec("aaab")); kak_assert(not vm.exec("aaaab")); } { TestVM<> vm{R"(a{3,}b)"}; kak_assert(not vm.exec("aab")); kak_assert(vm.exec("aaab")); kak_assert(vm.exec("aaaaab")); } { TestVM<> vm{R"(a{,3}b)"}; kak_assert(vm.exec("b")); kak_assert(vm.exec("ab")); kak_assert(vm.exec("aaab")); kak_assert(not vm.exec("aaaab")); } { TestVM<> vm{R"(f.*a(.*o))"}; kak_assert(vm.exec("blahfoobarfoobaz", RegexExecFlags::Search)); kak_assert(StringView{vm.captures()[0], vm.captures()[1]} == "foobarfoo"); kak_assert(StringView{vm.captures()[2], vm.captures()[3]} == "rfoo"); kak_assert(vm.exec("mais que fais la police", RegexExecFlags::Search)); kak_assert(StringView{vm.captures()[0], vm.captures()[1]} == "fais la po"); kak_assert(StringView{vm.captures()[2], vm.captures()[3]} == " po"); } { TestVM<> vm{R"([àb-dX-Z-]{3,5})"}; kak_assert(vm.exec("cà-Y")); kak_assert(not vm.exec("àeY")); kak_assert(vm.exec("dcbàX")); kak_assert(not vm.exec("efg")); } { TestVM<> vm{R"((a{3,5})a+)"}; kak_assert(vm.exec("aaaaaa", RegexExecFlags::None)); kak_assert(StringView{vm.captures()[2], vm.captures()[3]} == "aaaaa"); } { TestVM<> vm{R"((a{3,5}?)a+)"}; kak_assert(vm.exec("aaaaaa", RegexExecFlags::None)); kak_assert(StringView{vm.captures()[2], vm.captures()[3]} == "aaa"); } { TestVM<> vm{R"((a{3,5}?)a)"}; kak_assert(vm.exec("aaaa")); } { TestVM<> vm{R"(\d{3})"}; kak_assert(vm.exec("123")); kak_assert(not vm.exec("1x3")); } { TestVM<> vm{R"([-\d]+)"}; kak_assert(vm.exec("123-456")); kak_assert(not vm.exec("123_456")); } { TestVM<> vm{R"([ \H]+)"}; kak_assert(vm.exec("abc ")); kak_assert(not vm.exec("a \t")); } { TestVM<> vm{R"(\Q{}[]*+?\Ea+)"}; kak_assert(vm.exec("{}[]*+?aa")); } { TestVM<> vm{R"(\Q...)"}; kak_assert(vm.exec("...")); kak_assert(not vm.exec("bla")); } { TestVM<> vm{R"(foo\Kbar)"}; kak_assert(vm.exec("foobar", RegexExecFlags::None)); kak_assert(StringView{vm.captures()[0], vm.captures()[1]} == "bar"); kak_assert(not vm.exec("bar", RegexExecFlags::None)); } { TestVM<> vm{R"((fo+?).*)"}; kak_assert(vm.exec("foooo", RegexExecFlags::None)); kak_assert(StringView{vm.captures()[2], vm.captures()[3]} == "fo"); } { TestVM<> vm{R"((?=fo[\w]).)"}; kak_assert(vm.exec("barfoo", RegexExecFlags::Search)); kak_assert(StringView{vm.captures()[0], vm.captures()[1]} == "f"); } { TestVM<> vm{R"((? vm{R"((?!f[oa]o)...)"}; kak_assert(not vm.exec("foo")); kak_assert(vm.exec("qux")); } { TestVM<> vm{R"(...(?<=f\w.))"}; kak_assert(vm.exec("foo")); kak_assert(not vm.exec("qux")); } { TestVM<> vm{R"(...(? vm{R"(Foo(?i)f[oB]+)"}; kak_assert(vm.exec("FooFOoBb")); } { TestVM<> vm{R"([^\]]+)"}; kak_assert(not vm.exec("a]c")); kak_assert(vm.exec("abc")); } { TestVM<> vm{R"([^:\n]+)"}; kak_assert(not vm.exec("\nbc")); kak_assert(vm.exec("abc")); } { TestVM<> vm{R"((?:foo)+)"}; kak_assert(vm.exec("foofoofoo")); kak_assert(not vm.exec("barbarbar")); } { TestVM<> vm{R"((? vm{R"($)"}; kak_assert(vm.exec("foo\n", RegexExecFlags::Search)); kak_assert(*vm.captures()[0] == '\n'); } { TestVM vm{R"(fo{1,})"}; kak_assert(vm.exec("foo1fooo2", RegexExecFlags::Search)); kak_assert(*vm.captures()[1] == '2'); } { TestVM vm{R"((?<=f)oo(b[ae]r)?(?=baz))"}; kak_assert(vm.exec("foobarbazfoobazfooberbaz", RegexExecFlags::Search)); kak_assert(StringView{vm.captures()[0], vm.captures()[1]} == "oober"); kak_assert(StringView{vm.captures()[2], vm.captures()[3]} == "ber"); } { TestVM vm{R"((baz|boz|foo|qux)(? vm{R"(foo)"}; kak_assert(vm.exec("foofoo", RegexExecFlags::Search)); kak_assert(*vm.captures()[1] == 0); } { TestVM vm{R"($)"}; kak_assert(vm.exec("foo\nbar\nbaz\nqux", RegexExecFlags::Search | RegexExecFlags::NotEndOfLine)); kak_assert(StringView{vm.captures()[0]} == "\nqux"); } { TestVM<> vm{R"(()*)"}; kak_assert(not vm.exec(" ")); } { TestVM<> vm{R"(\b(? vm{R"((?=))"}; kak_assert(vm.exec("")); } { TestVM<> vm{R"((?i)FOO)"}; kak_assert(vm.exec("foo", RegexExecFlags::Search)); } { TestVM<> vm{R"(.?(?=foo))"}; kak_assert(vm.exec("afoo", RegexExecFlags::Search)); kak_assert(*vm.captures()[0] == 'a'); } { TestVM<> vm{R"((?i)(?=Foo))"}; kak_assert(vm.exec("fOO", RegexExecFlags::Search)); kak_assert(*vm.captures()[0] == 'f'); } { TestVM<> vm{R"([d-ea-dcf-k]+)"}; kak_assert(vm.exec("abcde")); } { TestVM<> vm{R"((?i)[a-c]+)"}; kak_assert(vm.exec("bCa")); } { TestVM<> vm{R"(д)"}; kak_assert(vm.exec("д", RegexExecFlags::Search)); } { TestVM<> vm{R"(\0\x0A\u260e\u260F)"}; const char str[] = "\0\n☎☏"; // work around the null byte in the literal kak_assert(vm.exec({str, str + sizeof(str)-1})); } }}; }