#ifndef diff_hh_INCLUDED #define diff_hh_INCLUDED // Implementation of the linear space variant of the algorithm described in // "An O(ND) Difference Algorithm and Its Variations" // (http://xmailserver.org/diff2.pdf) #include #include #include namespace Kakoune { // A snake is an edit followed by a (possibly empty) diagonal struct Snake { // The end points of the diagonal (x, y) -> (u, v) int x, y, u, v; // the edit op, reverse op happen at the end of the diagonal enum Op { Add, Del, RevAdd, RevDel } op; }; template Snake find_end_snake_of_further_reaching_dpath(IteratorA a, int N, IteratorB b, int M, const int* V, const int D, const int k, Equal eq) { const bool add = k == -D or (k != D and V[k-1] < V[k+1]); // if diagonal on the right goes further along x than diagonal on the left, // then we take a vertical edge from it to this diagonal, hence x = V[k+1] // else, we take an horizontal edge from our left diagonal,x = V[k-1]+1 const int x = add ? V[k+1] : V[k-1]+1; // we are by construction on diagonal k, so our position along b (y) is x - k. const int y = x - k; auto at = [](auto&& base, int index, int size) -> decltype(auto) { return forward ? base[index] : base[size - 1 - index]; }; int u = x, v = y; // follow end snake along diagonal k while (u < N and v < M and eq(at(a, u, N), at(b, v, M))) ++u, ++v; return { x, y, u, v, add ? Snake::Add : Snake::Del }; } template Snake find_middle_snake(IteratorA a, int N, IteratorB b, int M, int* V1, int* V2, int cost_limit, Equal eq) { const int delta = N - M; V1[1] = 0; V2[1] = 0; const int max_D = std::min((M + N + 1) / 2 + 1, cost_limit); for (int D = 0; D < max_D; ++D) { for (int k1 = -D; k1 <= D; k1 += 2) { auto p = find_end_snake_of_further_reaching_dpath(a, N, b, M, V1, D, k1, eq); V1[k1] = p.u; const int k2 = -(k1 - delta); if ((delta % 2 != 0) and -(D-1) <= k2 and k2 <= (D-1) and V1[k1] + V2[k2] >= N) return p;// return last snake on forward path, len = (2 * D - 1) } for (int k2 = -D; k2 <= D; k2 += 2) { auto p = find_end_snake_of_further_reaching_dpath(a, N, b, M, V2, D, k2, eq); V2[k2] = p.u; const int k1 = -(k2 - delta); if ((delta % 2 == 0) and -D <= k1 and k1 <= D and V1[k1] + V2[k2] >= N) return { N - p.u, M - p.v, N - p.x , M - p.y, (Snake::Op)(p.op + Snake::RevAdd) };// return last snake on reverse path, len = 2 * D } } // We did not find a minimal path in less than max_D iterations, iterate one more time finding the best Snake best{}; auto score = [](const Snake& s) { return s.u + s.v; }; for (int k1 = -max_D; k1 <= max_D; k1 += 2) { auto p = find_end_snake_of_further_reaching_dpath(a, N, b, M, V1, max_D, k1, eq); V1[k1] = p.u; if ((delta % 2 != 0) and p.u <= N and p.v <= M and score(p) >= score(best)) best = p; } for (int k2 = -max_D; k2 <= max_D; k2 += 2) { auto p = find_end_snake_of_further_reaching_dpath(a, N, b, M, V2, max_D, k2, eq); V2[k2] = p.u; if ((delta % 2 == 0) and p.u <= N and p.v <= M and score(p) >= score(best)) best = {p.x, p.y, p.u, p.v, (Snake::Op)(p.op + Snake::RevAdd)}; } if (best.op >= Snake::RevAdd) // reverse the snake now, as we were comparing snake length best = { N - best.u, M - best.v, N - best.x , M - best.y, best.op }; return best; } enum class DiffOp { Keep, Add, Remove }; template void find_diff_rec(IteratorA a, int begA, int endA, IteratorB b, int begB, int endB, int* V1, int* V2, int cost_limit, Equal eq, OnDiff&& on_diff) { auto on_diff_ifn = [&](DiffOp op, int len) { if (len != 0) on_diff(op, len); }; int prefix_len = 0; while (begA != endA and begB != endB and eq(a[begA], b[begB])) ++begA, ++begB, ++prefix_len; int suffix_len = 0; while (begA != endA and begB != endB and eq(a[endA-1], b[endB-1])) --endA, --endB, ++suffix_len; on_diff_ifn(DiffOp::Keep, prefix_len); const auto lenA = endA - begA, lenB = endB - begB; if (lenA == 0) on_diff_ifn(DiffOp::Add, lenB); else if (lenB == 0) on_diff_ifn(DiffOp::Remove, lenA); else { auto snake = find_middle_snake(a + begA, lenA, b + begB, lenB, V1, V2, cost_limit, eq); kak_assert(snake.u <= lenA and snake.v <= lenB); find_diff_rec(a, begA, begA + snake.x - (int)(snake.op == Snake::Del), b, begB, begB + snake.y - (int)(snake.op == Snake::Add), V1, V2, cost_limit, eq, on_diff); if (snake.op == Snake::Add) on_diff_ifn(DiffOp::Add, 1); if (snake.op == Snake::Del) on_diff_ifn(DiffOp::Remove, 1); on_diff_ifn(DiffOp::Keep, snake.u - snake.x); if (snake.op == Snake::RevAdd) on_diff_ifn(DiffOp::Add, 1); if (snake.op == Snake::RevDel) on_diff_ifn(DiffOp::Remove, 1); find_diff_rec(a, begA + snake.u + (int)(snake.op == Snake::RevDel), endA, b, begB + snake.v + (int)(snake.op == Snake::RevAdd), endB, V1, V2, cost_limit, eq, on_diff); } on_diff_ifn(DiffOp::Keep, suffix_len); } struct Diff { DiffOp op; int len; }; template> void for_each_diff(IteratorA a, int N, IteratorB b, int M, OnDiff&& on_diff, Equal eq = Equal{}) { const int max = 2 * (N + M) + 1; std::unique_ptr data(new int[2*max]); constexpr int cost_limit = 1000; Diff last{}; find_diff_rec(a, 0, N, b, 0, M, &data[N+M], &data[max + N+M], cost_limit, eq, [&last, &on_diff](DiffOp op, int len) { if (last.op == op) last.len += len; else { if (last.len != 0) on_diff(last.op, last.len); last = Diff{op, len}; } }); if (last.op != DiffOp{} or last.len != 0) on_diff(last.op, last.len); } } #endif // diff_hh_INCLUDED