#include "regex_impl.hh" #include "exception.hh" #include "string.hh" #include "unicode.hh" #include "unit_tests.hh" #include "utf8.hh" #include "utf8_iterator.hh" #include "string_utils.hh" #include "vector.hh" #include "utils.hh" #include #include #include namespace Kakoune { constexpr Codepoint CompiledRegex::StartDesc::other; constexpr Codepoint CompiledRegex::StartDesc::count; struct ParsedRegex { enum Op : char { Literal, AnyChar, AnyCharExceptNewLine, CharClass, CharType, Sequence, Alternation, LineStart, LineEnd, WordBoundary, NotWordBoundary, SubjectBegin, SubjectEnd, ResetStart, LookAhead, NegativeLookAhead, LookBehind, NegativeLookBehind, }; struct Quantifier { enum Type : char { One, Optional, RepeatZeroOrMore, RepeatOneOrMore, RepeatMinMax, }; Type type = One; bool greedy = true; int16_t min = -1, max = -1; bool allows_none() const { return type == Quantifier::Optional or type == Quantifier::RepeatZeroOrMore or (type == Quantifier::RepeatMinMax and min <= 0); } bool allows_infinite_repeat() const { return type == Quantifier::RepeatZeroOrMore or type == Quantifier::RepeatOneOrMore or (type == Quantifier::RepeatMinMax and max < 0); }; }; using NodeIndex = int16_t; struct [[gnu::packed]] Node { Op op; bool ignore_case; NodeIndex children_end; Codepoint value; Quantifier quantifier; uint16_t filler = 0; }; #ifndef __ppc__ static_assert(sizeof(Node) == 16, ""); #endif Vector nodes; Vector character_classes; Vector named_captures; uint32_t capture_count; }; namespace { template struct Children { static_assert(has_direction(mode)); using Index = ParsedRegex::NodeIndex; struct Sentinel {}; struct Iterator { static constexpr bool forward = mode & RegexMode::Forward; Iterator(ArrayView nodes, Index index) : m_nodes{nodes}, m_pos(forward ? index+1 : find_prev(index, nodes[index].children_end)), m_end(forward ? nodes[index].children_end : index) {} Iterator& operator++() { m_pos = forward ? m_nodes[m_pos].children_end : find_prev(m_end, m_pos); return *this; } Index operator*() const { return m_pos; } bool operator!=(Sentinel) const { return m_pos != m_end; } private: Index find_prev(Index parent, Index pos) const { Index child = parent+1; if (child == pos) return parent; while (m_nodes[child].children_end != pos) child = m_nodes[child].children_end; return child; } ArrayView m_nodes; Index m_pos; Index m_end; }; Iterator begin() const { return {m_parsed_regex.nodes, m_index}; } Sentinel end() const { return {}; } const ParsedRegex& m_parsed_regex; const Index m_index; }; } // Recursive descent parser based on naming used in the ECMAScript // standard, although the syntax is not fully compatible. struct RegexParser { RegexParser(StringView re) : m_regex{re}, m_pos{re.begin(), re} { m_parsed_regex.capture_count = 1; m_parsed_regex.nodes.reserve((size_t)re.length()); NodeIndex root = disjunction(0); kak_assert(root == 0); } ParsedRegex get_parsed_regex() { return std::move(m_parsed_regex); } static ParsedRegex parse(StringView re) { return RegexParser{re}.get_parsed_regex(); } private: struct InvalidPolicy { Codepoint operator()(Codepoint cp) const { throw regex_error{"Invalid utf8 in regex"}; } }; enum class Flags { None = 0, IgnoreCase = 1 << 0, DotMatchesNewLine = 1 << 1, }; friend constexpr bool with_bit_ops(Meta::Type) { return true; } using Iterator = utf8::iterator; using NodeIndex = ParsedRegex::NodeIndex; NodeIndex disjunction(uint32_t capture = -1) { NodeIndex index = add_node(ParsedRegex::Alternation, capture); while (true) { alternative(ParsedRegex::Sequence); if (at_end() or *m_pos != '|') break; ++m_pos; } get_node(index).children_end = m_parsed_regex.nodes.size(); return index; } NodeIndex alternative(ParsedRegex::Op op) { NodeIndex index = add_node(op); while (term()) {} get_node(index).children_end = m_parsed_regex.nodes.size(); return index; } Optional term() { while (modifiers()) // read all modifiers {} if (auto node = assertion()) return node; if (auto node = atom()) { get_node(*node).quantifier = quantifier(); return node; } return {}; } bool modifiers() { auto it = m_pos.base(); if (m_regex.end() - it >= 4 and *it++ == '(' and *it++ == '?') { while (true) { auto m = *it++; switch (m) { case 'i': m_flags |= Flags::IgnoreCase; break; case 'I': m_flags &= ~Flags::IgnoreCase; break; case 's': m_flags |= Flags::DotMatchesNewLine; break; case 'S': m_flags &= ~Flags::DotMatchesNewLine; break; case ')': m_pos = Iterator{it, m_regex}; return true; default: return false; } } } return false; } Optional assertion() { if (at_end()) return {}; switch (*m_pos) { case '^': ++m_pos; return add_node(ParsedRegex::LineStart); case '$': ++m_pos; return add_node(ParsedRegex::LineEnd); case '\\': if (m_pos+1 == m_regex.end()) return {}; switch (*(m_pos+1)) { case 'b': m_pos += 2; return add_node(ParsedRegex::WordBoundary); case 'B': m_pos += 2; return add_node(ParsedRegex::NotWordBoundary); case 'A': m_pos += 2; return add_node(ParsedRegex::SubjectBegin); case 'z': m_pos += 2; return add_node(ParsedRegex::SubjectEnd); case 'K': m_pos += 2; return add_node(ParsedRegex::ResetStart); } break; case '(': { auto it = m_pos.base()+1; if (m_regex.end() - it <= 2 or *it++ != '?') return {}; ParsedRegex::Op op; switch (*it++) { case '=': op = ParsedRegex::LookAhead; break; case '!': op = ParsedRegex::NegativeLookAhead; break; case '<': { switch (*it++) { case '=': op = ParsedRegex::LookBehind; break; case '!': op = ParsedRegex::NegativeLookBehind; break; default: return {}; } break; } default: return {}; } m_pos = Iterator{it, m_regex}; NodeIndex lookaround = alternative(op); if (at_end() or *m_pos++ != ')') parse_error("unclosed parenthesis"); validate_lookaround(lookaround); return lookaround; } } return {}; } Optional atom() { if (at_end()) return {}; switch (const Codepoint cp = *m_pos) { case '.': ++m_pos; return add_node((m_flags & Flags::DotMatchesNewLine) ? ParsedRegex::AnyChar : ParsedRegex::AnyCharExceptNewLine); case '(': { uint32_t capture_group = -1; const char* it = (++m_pos).base(); if (m_regex.end() - it < 2 or *it++ != '?') capture_group = m_parsed_regex.capture_count++; else if (*it == ':') m_pos = Iterator{++it, m_regex}; else if (*it == '<') { const auto name_start = ++it; while (it != m_regex.end() and is_word(*it)) ++it; if (it == m_regex.end() or *it != '>') parse_error("named captures should be only ascii word characters"); capture_group = m_parsed_regex.capture_count++; m_parsed_regex.named_captures.push_back({{name_start, it}, capture_group}); m_pos = Iterator{++it, m_regex}; } NodeIndex content = disjunction(capture_group); if (at_end() or *m_pos++ != ')') parse_error("unclosed parenthesis"); return content; } case '\\': ++m_pos; return atom_escape(); case '[': ++m_pos; return character_class(); case '|': case ')': return {}; default: if (contains(StringView{"^$.*+?[]{}"}, cp) or (cp >= 0xF0000 and cp <= 0xFFFFF)) parse_error(format("unexpected '{}'", cp)); ++m_pos; return add_node(ParsedRegex::Literal, cp); } } Codepoint read_hex(size_t count) { Codepoint res = 0; for (int i = 0; i < count; ++i) { if (at_end()) parse_error("unterminated hex sequence"); Codepoint digit = *m_pos++; Codepoint digit_value; if ('0' <= digit and digit <= '9') digit_value = digit - '0'; else if ('a' <= digit and digit <= 'f') digit_value = 0xa + digit - 'a'; else if ('A' <= digit and digit <= 'F') digit_value = 0xa + digit - 'A'; else parse_error(format("invalid hex digit '{}'", digit)); res = res * 16 + digit_value; } return res; } NodeIndex atom_escape() { const Codepoint cp = *m_pos++; if (cp == 'Q') { auto escaped_sequence = add_node(ParsedRegex::Sequence); constexpr StringView end_mark{"\\E"}; auto quote_end = std::search(m_pos.base(), m_regex.end(), end_mark.begin(), end_mark.end()); while (m_pos != quote_end) add_node(ParsedRegex::Literal, *m_pos++); get_node(escaped_sequence).children_end = m_parsed_regex.nodes.size(); if (quote_end != m_regex.end()) m_pos += 2; return escaped_sequence; } // CharacterClassEscape auto class_it = find_if(character_class_escapes, [cp](auto& c) { return c.cp == cp; }); if (class_it != std::end(character_class_escapes)) return add_node(ParsedRegex::CharType, (Codepoint)class_it->ctype); // CharacterEscape for (auto& control : control_escapes) { if (control.name == cp) return add_node(ParsedRegex::Literal, control.value); } if (cp == '0') return add_node(ParsedRegex::Literal, '\0'); else if (cp == 'c') { if (at_end()) parse_error("unterminated control escape"); Codepoint ctrl = *m_pos++; if (('a' <= ctrl and ctrl <= 'z') or ('A' <= ctrl and ctrl <= 'Z')) return add_node(ParsedRegex::Literal, ctrl % 32); parse_error(format("Invalid control escape character '{}'", ctrl)); } else if (cp == 'x') return add_node(ParsedRegex::Literal, read_hex(2)); else if (cp == 'u') return add_node(ParsedRegex::Literal, read_hex(6)); if (contains("^$\\.*+?()[]{}|", cp)) // SyntaxCharacter return add_node(ParsedRegex::Literal, cp); parse_error(format("unknown atom escape '{}'", cp)); } static void normalize_ranges(Vector& ranges) { if (ranges.empty()) return; // Sort ranges so that we can use binary search std::sort(ranges.begin(), ranges.end(), [](auto& lhs, auto& rhs) { return lhs.min < rhs.min; }); // merge overlapping ranges auto pos = ranges.begin(); for (auto next = pos+1; next != ranges.end(); ++next) { if (pos->max + 1 >= next->min) { if (next->max > pos->max) pos->max = next->max; } else *++pos = *next; } ranges.erase(pos+1, ranges.end()); } NodeIndex character_class() { CharacterClass character_class; character_class.ignore_case = (m_flags & Flags::IgnoreCase); character_class.negative = m_pos != m_regex.end() and *m_pos == '^'; if (character_class.negative) ++m_pos; while (m_pos != m_regex.end() and *m_pos != ']') { auto cp = *m_pos++; if (cp == '-') { character_class.ranges.push_back({ '-', '-' }); continue; } if (at_end()) break; auto read_escaped_char = [this]() { Codepoint cp = *m_pos++; auto it = find_if(control_escapes, [cp](auto&& t) { return t.name == cp; }); if (it != std::end(control_escapes)) return it->value; if (cp == 'x') return read_hex(2); if (cp == 'u') return read_hex(6); if (not contains("^$\\.*+?()[]{}|-", cp)) // SyntaxCharacter and - parse_error(format("unknown character class escape '{}'", cp)); return cp; }; if (cp == '\\') { auto it = find_if(character_class_escapes, [cp = *m_pos](auto&& t) { return t.cp == cp; }); if (it != std::end(character_class_escapes)) { character_class.ctypes |= it->ctype; ++m_pos; continue; } else // its an escaped character cp = read_escaped_char(); } CharacterClass::Range range = { cp, cp }; if (*m_pos == '-') { if (++m_pos == m_regex.end()) break; if (*m_pos != ']') { cp = *m_pos++; if (cp == '\\') cp = read_escaped_char(); range.max = cp; if (range.min > range.max) parse_error("invalid range specified"); } else { character_class.ranges.push_back(range); range = { '-', '-' }; } } character_class.ranges.push_back(range); } if (at_end()) parse_error("unclosed character class"); ++m_pos; if (character_class.ignore_case) { for (auto& range : character_class.ranges) { range.min = to_lower(range.min); range.max = to_lower(range.max); } } normalize_ranges(character_class.ranges); // Optimize the relatively common case of using a character class to // escape a character, such as [*] if (character_class.ctypes == CharacterType::None and not character_class.negative and character_class.ranges.size() == 1 and character_class.ranges.front().min == character_class.ranges.front().max) return add_node(ParsedRegex::Literal, character_class.ranges.front().min); if (character_class.ctypes != CharacterType::None and not character_class.negative and character_class.ranges.empty()) return add_node(ParsedRegex::CharType, (Codepoint)character_class.ctypes); auto it = std::find(m_parsed_regex.character_classes.begin(), m_parsed_regex.character_classes.end(), character_class); auto class_id = it - m_parsed_regex.character_classes.begin(); if (it == m_parsed_regex.character_classes.end()) m_parsed_regex.character_classes.push_back(std::move(character_class)); return add_node(ParsedRegex::CharClass, class_id); } ParsedRegex::Quantifier quantifier() { if (at_end()) return {ParsedRegex::Quantifier::One}; constexpr int max_repeat = 1000; auto read_bound = [&]() { int16_t res = 0; for (auto begin = m_pos; m_pos != m_regex.end(); ++m_pos) { const auto cp = *m_pos; if (cp < '0' or cp > '9') return m_pos == begin ? (int16_t)-1 : res; res = res * 10 + cp - '0'; if (res > max_repeat) parse_error(format("Explicit quantifier is too big, maximum is {}", max_repeat)); } return res; }; auto check_greedy = [&]() { if (at_end() or *m_pos != '?') return true; ++m_pos; return false; }; switch (*m_pos) { case '*': ++m_pos; return {ParsedRegex::Quantifier::RepeatZeroOrMore, check_greedy()}; case '+': ++m_pos; return {ParsedRegex::Quantifier::RepeatOneOrMore, check_greedy()}; case '?': ++m_pos; return {ParsedRegex::Quantifier::Optional, check_greedy()}; case '{': { ++m_pos; const int16_t min = read_bound(); int16_t max = min; if (*m_pos == ',') { ++m_pos; max = read_bound(); } if (*m_pos++ != '}') parse_error("expected closing bracket"); return {ParsedRegex::Quantifier::RepeatMinMax, check_greedy(), min, max}; } default: return {ParsedRegex::Quantifier::One}; } } NodeIndex add_node(ParsedRegex::Op op, Codepoint value = -1, ParsedRegex::Quantifier quantifier = {ParsedRegex::Quantifier::One}) { constexpr auto max_nodes = std::numeric_limits::max(); const NodeIndex res = m_parsed_regex.nodes.size(); if (res == max_nodes) parse_error(format("regex parsed to more than {} ast nodes", max_nodes)); const NodeIndex next = res+1; m_parsed_regex.nodes.push_back({op, m_flags & Flags::IgnoreCase, next, value, quantifier}); return res; } ParsedRegex::Node& get_node(NodeIndex index) { return m_parsed_regex.nodes[index]; } bool at_end() const { return m_pos == m_regex.end(); } [[gnu::noreturn]] void parse_error(StringView error) const { throw regex_error(format("regex parse error: {} at '{}<<>>{}'", error, StringView{m_regex.begin(), m_pos.base()}, StringView{m_pos.base(), m_regex.end()})); } void validate_lookaround(NodeIndex index) { using Lookaround = CompiledRegex::Lookaround; for (auto child_index : Children<>{m_parsed_regex, index}) { auto& child = get_node(child_index); if (child.op != ParsedRegex::Literal and child.op != ParsedRegex::CharClass and child.op != ParsedRegex::CharType and child.op != ParsedRegex::AnyChar and child.op != ParsedRegex::AnyCharExceptNewLine) parse_error("Lookaround can only contain literals, any chars or character classes"); if (child.op == ParsedRegex::Literal and to_underlying(Lookaround::OpBegin) <= child.value and child.value < to_underlying(Lookaround::OpEnd)) parse_error("Lookaround does not support literals codepoint between 0xF0000 and 0xFFFFD"); if (child.quantifier.type != ParsedRegex::Quantifier::One) parse_error("Quantifiers cannot be used in lookarounds"); } } ParsedRegex m_parsed_regex; StringView m_regex; Iterator m_pos; Flags m_flags = Flags::DotMatchesNewLine; static constexpr struct CharacterClassEscape { Codepoint cp; CharacterType ctype; } character_class_escapes[] = { { 'd', CharacterType::Digit }, { 'D', CharacterType::NotDigit }, { 'w', CharacterType::Word }, { 'W', CharacterType::NotWord }, { 's', CharacterType::Whitespace }, { 'S', CharacterType::NotWhitespace }, { 'h', CharacterType::HorizontalWhitespace }, { 'H', CharacterType::NotHorizontalWhitespace }, }; static constexpr struct ControlEscape { Codepoint name; Codepoint value; } control_escapes[] = { { 'f', '\f' }, { 'n', '\n' }, { 'r', '\r' }, { 't', '\t' }, { 'v', '\v' } }; }; constexpr RegexParser::CharacterClassEscape RegexParser::character_class_escapes[]; constexpr RegexParser::ControlEscape RegexParser::control_escapes[]; struct RegexCompiler { using OpIndex = int16_t; RegexCompiler(ParsedRegex&& parsed_regex, RegexCompileFlags flags) : m_flags(flags), m_parsed_regex{parsed_regex} { kak_assert(not (flags & RegexCompileFlags::NoForward) or flags & RegexCompileFlags::Backward); // Approximation of the number of instructions generated m_program.instructions.reserve((parsed_regex.nodes.size() + 1) * (((flags & RegexCompileFlags::Backward) and not (flags & RegexCompileFlags::NoForward)) ? 2 : 1)); if (not (flags & RegexCompileFlags::NoForward)) { m_program.forward_start_desc = compute_start_desc(); compile_node(0); optimize(0, m_program.instructions.size()); push_inst(CompiledRegex::Match); } if (flags & RegexCompileFlags::Backward) { m_program.first_backward_inst = m_program.instructions.size(); m_program.backward_start_desc = compute_start_desc(); compile_node(0); optimize(m_program.first_backward_inst, m_program.instructions.size()); push_inst(CompiledRegex::Match); } else m_program.first_backward_inst = -1; m_program.character_classes = std::move(m_parsed_regex.character_classes); m_program.named_captures = std::move(m_parsed_regex.named_captures); m_program.save_count = m_parsed_regex.capture_count * 2; } CompiledRegex get_compiled_regex() { return std::move(m_program); } private: template OpIndex compile_node_inner(ParsedRegex::NodeIndex index) { auto& node = get_node(index); const uint32_t start_pos = (uint32_t)m_program.instructions.size(); const bool ignore_case = node.ignore_case; const bool save = (node.op == ParsedRegex::Alternation or node.op == ParsedRegex::Sequence) and (node.value == 0 or (node.value != -1 and not (m_flags & RegexCompileFlags::NoSubs))); constexpr bool forward = direction == RegexMode::Forward; if (save) push_inst(CompiledRegex::Save, {.save_index = int16_t(node.value * 2 + (forward ? 0 : 1))}); Vector goto_inner_end_offsets; switch (node.op) { case ParsedRegex::Literal: push_inst(CompiledRegex::Literal, {.literal={.codepoint=ignore_case ? to_lower(node.value) : node.value, .ignore_case=ignore_case}}); break; case ParsedRegex::AnyChar: push_inst(CompiledRegex::AnyChar); break; case ParsedRegex::AnyCharExceptNewLine: push_inst(CompiledRegex::AnyCharExceptNewLine); break; case ParsedRegex::CharClass: push_inst(CompiledRegex::CharClass, {.character_class_index=int16_t(node.value)}); break; case ParsedRegex::CharType: push_inst(CompiledRegex::CharType, {.character_type=CharacterType{(unsigned char)node.value}}); break; case ParsedRegex::Sequence: { for (auto child : Children{m_parsed_regex, index}) compile_node(child); break; } case ParsedRegex::Alternation: { for (auto child : Children<>{m_parsed_regex, index}) { if (child != index+1) push_inst(CompiledRegex::Split); } auto split_pos = m_program.instructions.size(); const auto end = node.children_end; for (auto child : Children<>{m_parsed_regex, index}) { auto node = compile_node(child); if (child != index+1) m_program.instructions[--split_pos].param.split = CompiledRegex::Param::Split{.target = node, .prioritize_parent = true}; if (get_node(child).children_end != end) { auto jump = push_inst(CompiledRegex::Jump); goto_inner_end_offsets.push_back(jump); } } break; } case ParsedRegex::LookAhead: case ParsedRegex::NegativeLookAhead: push_inst(CompiledRegex::LookAround, {.lookaround={ .index=push_lookaround(index, ignore_case), .ahead=true, .positive=node.op == ParsedRegex::LookAhead, .ignore_case=ignore_case}}); break; case ParsedRegex::LookBehind: case ParsedRegex::NegativeLookBehind: push_inst(CompiledRegex::LookAround, {.lookaround={ .index=push_lookaround(index, ignore_case), .ahead=false, .positive=node.op == ParsedRegex::LookBehind, .ignore_case=ignore_case}}); break; case ParsedRegex::LineStart: push_inst(CompiledRegex::LineAssertion, {.line_start=true}); break; case ParsedRegex::LineEnd: push_inst(CompiledRegex::LineAssertion, {.line_start=false}); break; case ParsedRegex::WordBoundary: push_inst(CompiledRegex::WordBoundary, {.word_boundary_positive=true}); break; case ParsedRegex::NotWordBoundary: push_inst(CompiledRegex::WordBoundary, {.word_boundary_positive=false}); break; case ParsedRegex::SubjectBegin: push_inst(CompiledRegex::SubjectAssertion, {.subject_begin=true}); break; case ParsedRegex::SubjectEnd: push_inst(CompiledRegex::SubjectAssertion, {.subject_begin=false}); break; case ParsedRegex::ResetStart: push_inst(CompiledRegex::Save, {.save_index=0}); break; } for (auto& offset : goto_inner_end_offsets) m_program.instructions[offset].param.jump_target = m_program.instructions.size(); if (save) push_inst(CompiledRegex::Save, {.save_index=int16_t(node.value * 2 + (forward ? 1 : 0))}); return start_pos; } template OpIndex compile_node(ParsedRegex::NodeIndex index) { auto& node = get_node(index); const OpIndex start_pos = (OpIndex)m_program.instructions.size(); Vector goto_ends; auto& quantifier = node.quantifier; if (quantifier.allows_none()) { auto split_pos = push_inst(CompiledRegex::Split, {.split={.target=0, .prioritize_parent=quantifier.greedy}}); goto_ends.push_back(split_pos); } auto inner_pos = compile_node_inner(index); // Write the node multiple times when we have a min count quantifier for (int i = 1; i < quantifier.min; ++i) inner_pos = compile_node_inner(index); if (quantifier.allows_infinite_repeat()) push_inst(CompiledRegex::Split, {.split = {.target=inner_pos, .prioritize_parent=not quantifier.greedy}}); // Write the node as an optional match for the min -> max counts else for (int i = std::max((int16_t)1, quantifier.min); // STILL UGLY ! i < quantifier.max; ++i) { auto split_pos = push_inst(CompiledRegex::Split, {.split={.target=0, .prioritize_parent=quantifier.greedy}}); goto_ends.push_back(split_pos); compile_node_inner(index); } for (auto offset : goto_ends) m_program.instructions[offset].param.split.target = m_program.instructions.size(); return start_pos; } OpIndex push_inst(CompiledRegex::Op op, CompiledRegex::Param param = {}) { constexpr auto max_instructions = std::numeric_limits::max(); const auto res = m_program.instructions.size(); if (res >= max_instructions) throw regex_error(format("regex compiled to more than {} instructions", max_instructions)); m_program.instructions.push_back({ op, 0, param }); return OpIndex(res); } template int16_t push_lookaround(ParsedRegex::NodeIndex index, bool ignore_case) { using Lookaround = CompiledRegex::Lookaround; const int16_t res = m_program.lookarounds.size(); for (auto child : Children{m_parsed_regex, index}) { auto& character = get_node(child); if (character.op == ParsedRegex::Literal) m_program.lookarounds.push_back( static_cast(ignore_case ? to_lower(character.value) : character.value)); else if (character.op == ParsedRegex::AnyChar) m_program.lookarounds.push_back(Lookaround::AnyChar); else if (character.op == ParsedRegex::AnyCharExceptNewLine) m_program.lookarounds.push_back(Lookaround::AnyCharExceptNewLine); else if (character.op == ParsedRegex::CharClass) m_program.lookarounds.push_back(static_cast(to_underlying(Lookaround::CharacterClass) + character.value)); else if (character.op == ParsedRegex::CharType) m_program.lookarounds.push_back(static_cast(to_underlying(Lookaround::CharacterType) | character.value)); else kak_assert(false); } m_program.lookarounds.push_back(Lookaround::EndOfLookaround); return res; } // Mutate start_desc with informations on which Codepoint could start a match. // Returns true if the node possibly does not consume the char, in which case // the next node would still be relevant for the parent node start chars computation. template bool compute_start_desc(ParsedRegex::NodeIndex index, CompiledRegex::StartDesc& start_desc) const { auto& node = get_node(index); switch (node.op) { case ParsedRegex::Literal: if (node.value < CompiledRegex::StartDesc::count) { if (node.ignore_case) { start_desc.map[to_lower(node.value)] = true; start_desc.map[to_upper(node.value)] = true; } else start_desc.map[node.value] = true; } else start_desc.map[CompiledRegex::StartDesc::other] = true; return node.quantifier.allows_none(); case ParsedRegex::AnyChar: for (auto& b : start_desc.map) b = true; return node.quantifier.allows_none(); case ParsedRegex::AnyCharExceptNewLine: for (Codepoint cp = 0; cp < CompiledRegex::StartDesc::count; ++cp) { if (cp != '\n') start_desc.map[cp] = true; } return node.quantifier.allows_none(); case ParsedRegex::CharClass: { auto& character_class = m_parsed_regex.character_classes[node.value]; if (character_class.ctypes == CharacterType::None and not character_class.negative and not character_class.ignore_case) { for (auto& range : character_class.ranges) { const auto clamp = [](Codepoint cp) { return std::min(CompiledRegex::StartDesc::count, cp); }; for (auto cp = clamp(range.min), end = clamp(range.max + 1); cp < end; ++cp) start_desc.map[cp] = true; if (range.max >= CompiledRegex::StartDesc::count) start_desc.map[CompiledRegex::StartDesc::other] = true; } } else { for (Codepoint cp = 0; cp < CompiledRegex::StartDesc::count; ++cp) { if (start_desc.map[cp] or character_class.matches(cp)) start_desc.map[cp] = true; } } start_desc.map[CompiledRegex::StartDesc::other] = true; return node.quantifier.allows_none(); } case ParsedRegex::CharType: { const CharacterType ctype = (CharacterType)node.value; for (Codepoint cp = 0; cp < CompiledRegex::StartDesc::count; ++cp) { if (is_ctype(ctype, cp)) start_desc.map[cp] = true; } start_desc.map[CompiledRegex::StartDesc::other] = true; return node.quantifier.allows_none(); } case ParsedRegex::Sequence: { for (auto child : Children{m_parsed_regex, index}) { if (not compute_start_desc(child, start_desc)) return node.quantifier.allows_none(); } return true; } case ParsedRegex::Alternation: { bool all_consumed = not node.quantifier.allows_none(); for (auto child : Children<>{m_parsed_regex, index}) { if (compute_start_desc(child, start_desc)) all_consumed = false; } return not all_consumed; } case ParsedRegex::LineStart: case ParsedRegex::LineEnd: case ParsedRegex::WordBoundary: case ParsedRegex::NotWordBoundary: case ParsedRegex::SubjectBegin: case ParsedRegex::SubjectEnd: case ParsedRegex::ResetStart: case ParsedRegex::LookAhead: case ParsedRegex::LookBehind: case ParsedRegex::NegativeLookAhead: case ParsedRegex::NegativeLookBehind: return true; } return false; } template [[gnu::noinline]] std::unique_ptr compute_start_desc() const { CompiledRegex::StartDesc start_desc{}; if (compute_start_desc(0, start_desc) or not contains(start_desc.map, false)) return nullptr; return std::make_unique(start_desc); } void optimize(size_t begin, size_t end) { if (not (m_flags & RegexCompileFlags::Optimize)) return; auto is_jump = [](CompiledRegex::Op op) { return op >= CompiledRegex::Op::Jump and op <= CompiledRegex::Op::Split; }; for (auto i = begin; i < end; ++i) { auto& inst = m_program.instructions[i]; if (is_jump(inst.op)) m_program.instructions[inst.param.jump_target].last_step = 0xffff; // tag as jump target } for (auto block_begin = begin; block_begin < end; ) { auto block_end = block_begin + 1; while (block_end < end and not is_jump(m_program.instructions[block_end].op) and m_program.instructions[block_end].last_step != 0xffff) ++block_end; peephole_optimize(block_begin, block_end); block_begin = block_end; } } void peephole_optimize(size_t begin, size_t end) { // Move saves after all assertions on the same character auto is_assertion = [](CompiledRegex::Op op) { return op >= CompiledRegex::LineAssertion; }; for (auto i = begin, j = begin + 1; j < end; ++i, ++j) { if (m_program.instructions[i].op == CompiledRegex::Save and is_assertion(m_program.instructions[j].op)) std::swap(m_program.instructions[i], m_program.instructions[j]); } } const ParsedRegex::Node& get_node(ParsedRegex::NodeIndex index) const { return m_parsed_regex.nodes[index]; } CompiledRegex m_program; RegexCompileFlags m_flags; ParsedRegex& m_parsed_regex; }; String dump_regex(const CompiledRegex& program) { String res; int count = 0; for (auto& inst : program.instructions) { char buf[20]; sprintf(buf, " %03d ", count++); res += buf; switch (inst.op) { case CompiledRegex::Literal: res += format("literal {}{}\n", inst.param.literal.ignore_case ? "(ignore case) " : "", inst.param.literal.codepoint); break; case CompiledRegex::AnyChar: res += "any char\n"; break; case CompiledRegex::AnyCharExceptNewLine: res += "anything but newline\n"; break; case CompiledRegex::Jump: res += format("jump {}\n", inst.param.jump_target); break; case CompiledRegex::Split: { res += format("split (prioritize {}) {}\n", (inst.param.split.prioritize_parent) ? "parent" : "child", inst.param.split.target); break; } case CompiledRegex::Save: res += format("save {}\n", inst.param.save_index); break; case CompiledRegex::CharClass: res += format("character class {}\n", inst.param.character_class_index); break; case CompiledRegex::CharType: res += format("character type {}\n", to_underlying(inst.param.character_type)); break; case CompiledRegex::LineAssertion: res += format("line {}\n", inst.param.line_start ? "start" : "end");; break; case CompiledRegex::SubjectAssertion: res += format("subject {}\n", inst.param.subject_begin ? "begin" : "end"); break; case CompiledRegex::WordBoundary: res += format("{}word boundary\n", inst.param.word_boundary_positive ? "" : "not "); break; case CompiledRegex::LookAround: { String name; name += inst.param.lookaround.positive ? "" : "negative "; name += "look "; name += inst.param.lookaround.ahead ? "ahead " : "behind "; if (inst.param.lookaround.ignore_case) name += " (ignore case)"; String str; for (auto it = program.lookarounds.begin() + inst.param.lookaround.index; *it != CompiledRegex::Lookaround::EndOfLookaround; ++it) utf8::dump(std::back_inserter(str), to_underlying(*it)); res += format("{} ({})\n", name, str); break; } case CompiledRegex::Match: res += "match\n"; } } auto dump_start_desc = [&](const CompiledRegex::StartDesc& desc, StringView name) { res += name + " start desc: ["; for (size_t c = 0; c < CompiledRegex::StartDesc::count; ++c) { if (desc.map[c]) { if (c < 32) res += format("<0x{}>", Hex{c}); else res += (char)c; } } res += "]\n"; }; if (program.forward_start_desc) dump_start_desc(*program.forward_start_desc, "forward"); if (program.backward_start_desc) dump_start_desc(*program.backward_start_desc, "backward"); return res; } CompiledRegex compile_regex(StringView re, RegexCompileFlags flags) { return RegexCompiler{RegexParser::parse(re), flags}.get_compiled_regex(); } bool is_ctype(CharacterType ctype, Codepoint cp) { auto check = [&](CharacterType bit, CharacterType not_bit, auto&& func) { return (ctype & (bit | not_bit)) and func(cp) == (bool)(ctype & bit); }; return check(CharacterType::Word, CharacterType::NotWord, [](Codepoint cp) { return is_word(cp); }) or check(CharacterType::Whitespace, CharacterType::NotWhitespace, is_blank) or check(CharacterType::HorizontalWhitespace, CharacterType::NotHorizontalWhitespace, is_horizontal_blank) or check(CharacterType::Digit, CharacterType::NotDigit, iswdigit); } namespace { template struct TestVM : CompiledRegex, ThreadedRegexVM { TestVM(StringView re) : CompiledRegex{compile_regex(re, mode & RegexMode::Forward ? RegexCompileFlags::None : RegexCompileFlags::Backward)}, TestVM::ThreadedRegexVM{static_cast(*this)} {} bool exec(StringView re, RegexExecFlags flags = RegexExecFlags::None) { return TestVM::ThreadedRegexVM::exec(re.begin(), re.end(), re.begin(), re.end(), flags); } using TestVM::ThreadedRegexVM::exec; }; } auto test_regex = UnitTest{[]{ { TestVM<> vm{R"(a*b)"}; kak_assert(vm.exec("b")); kak_assert(vm.exec("ab")); kak_assert(vm.exec("aaab")); kak_assert(not vm.exec("acb")); kak_assert(not vm.exec("abc")); kak_assert(not vm.exec("")); } { TestVM<> vm{R"(^a.*b$)"}; kak_assert(vm.exec("afoob")); kak_assert(vm.exec("ab")); kak_assert(not vm.exec("bab")); kak_assert(not vm.exec("")); } { TestVM<> vm{R"(^(foo|qux|baz)+(bar)?baz$)"}; kak_assert(vm.exec("fooquxbarbaz")); kak_assert(StringView{vm.captures()[2], vm.captures()[3]} == "qux"); kak_assert(not vm.exec("fooquxbarbaze")); kak_assert(not vm.exec("quxbar")); kak_assert(not vm.exec("blahblah")); kak_assert(vm.exec("bazbaz")); kak_assert(vm.exec("quxbaz")); } { TestVM<> vm{R"(.*\b(foo|bar)\b.*)"}; kak_assert(vm.exec("qux foo baz")); kak_assert(StringView{vm.captures()[2], vm.captures()[3]} == "foo"); kak_assert(not vm.exec("quxfoobaz")); kak_assert(vm.exec("bar")); kak_assert(not vm.exec("foobar")); } { TestVM<> vm{R"((foo|bar))"}; kak_assert(vm.exec("foo")); kak_assert(vm.exec("bar")); kak_assert(not vm.exec("foobar")); } { TestVM<> vm{R"(a{3,5}b)"}; kak_assert(not vm.exec("aab")); kak_assert(vm.exec("aaab")); kak_assert(not vm.exec("aaaaaab")); kak_assert(vm.exec("aaaaab")); } { TestVM<> vm{R"(a{3}b)"}; kak_assert(not vm.exec("aab")); kak_assert(vm.exec("aaab")); kak_assert(not vm.exec("aaaab")); } { TestVM<> vm{R"(a{3,}b)"}; kak_assert(not vm.exec("aab")); kak_assert(vm.exec("aaab")); kak_assert(vm.exec("aaaaab")); } { TestVM<> vm{R"(a{,3}b)"}; kak_assert(vm.exec("b")); kak_assert(vm.exec("ab")); kak_assert(vm.exec("aaab")); kak_assert(not vm.exec("aaaab")); } { TestVM vm{R"(f.*a(.*o))"}; kak_assert(vm.exec("blahfoobarfoobaz")); kak_assert(StringView{vm.captures()[0], vm.captures()[1]} == "foobarfoo"); kak_assert(StringView{vm.captures()[2], vm.captures()[3]} == "rfoo"); kak_assert(vm.exec("mais que fais la police")); kak_assert(StringView{vm.captures()[0], vm.captures()[1]} == "fais la po"); kak_assert(StringView{vm.captures()[2], vm.captures()[3]} == " po"); } { TestVM<> vm{R"([àb-dX-Z-]{3,5})"}; kak_assert(vm.exec("cà-Y")); kak_assert(not vm.exec("àeY")); kak_assert(vm.exec("dcbàX")); kak_assert(not vm.exec("efg")); } { TestVM<> vm{R"((a{3,5})a+)"}; kak_assert(vm.exec("aaaaaa", RegexExecFlags::None)); kak_assert(StringView{vm.captures()[2], vm.captures()[3]} == "aaaaa"); } { TestVM<> vm{R"((a{3,5}?)a+)"}; kak_assert(vm.exec("aaaaaa", RegexExecFlags::None)); kak_assert(StringView{vm.captures()[2], vm.captures()[3]} == "aaa"); } { TestVM<> vm{R"((a{3,5}?)a)"}; kak_assert(vm.exec("aaaa")); } { TestVM<> vm{R"(\d{3})"}; kak_assert(vm.exec("123")); kak_assert(not vm.exec("1x3")); } { TestVM<> vm{R"([-\d]+)"}; kak_assert(vm.exec("123-456")); kak_assert(not vm.exec("123_456")); } { TestVM<> vm{R"([ \H]+)"}; kak_assert(vm.exec("abc ")); kak_assert(not vm.exec("a \t")); } { TestVM<> vm{R"(\Q{}[]*+?\Ea+)"}; kak_assert(vm.exec("{}[]*+?aa")); } { TestVM<> vm{R"(\Q...)"}; kak_assert(vm.exec("...")); kak_assert(not vm.exec("bla")); } { TestVM vm{R"(foo\Kbar)"}; kak_assert(vm.exec("foobar")); kak_assert(StringView{vm.captures()[0], vm.captures()[1]} == "bar"); kak_assert(not vm.exec("bar")); } { TestVM vm{R"(foobaz|foo|foobar)"}; kak_assert(vm.exec("foobar")); kak_assert(StringView{vm.captures()[0], vm.captures()[1]} == "foo"); } { TestVM vm{R"((fo+?).*)"}; kak_assert(vm.exec("foooo")); kak_assert(StringView{vm.captures()[2], vm.captures()[3]} == "fo"); } { TestVM vm{R"((?=fo[\w]).)"}; kak_assert(vm.exec("barfoo")); kak_assert(StringView{vm.captures()[0], vm.captures()[1]} == "f"); } { TestVM<> vm{R"((? vm{R"((?!f[oa]o)...)"}; kak_assert(not vm.exec("foo")); kak_assert(vm.exec("qux")); } { TestVM<> vm{R"(...(?<=f\w.))"}; kak_assert(vm.exec("foo")); kak_assert(not vm.exec("qux")); } { TestVM<> vm{R"(...(? vm{R"(Foo(?i)f[oB]+)"}; kak_assert(vm.exec("FooFOoBb")); } { TestVM<> vm{R"((?i)[a-z]+)"}; kak_assert(vm.exec("ABC")); } { TestVM<> vm{R"([^\]]+)"}; kak_assert(not vm.exec("a]c")); kak_assert(vm.exec("abc")); } { TestVM<> vm{R"([^:\n]+)"}; kak_assert(not vm.exec("\nbc")); kak_assert(vm.exec("abc")); } { TestVM<> vm{R"((?:foo)+)"}; kak_assert(vm.exec("foofoofoo")); kak_assert(not vm.exec("barbarbar")); } { TestVM vm{R"((? vm{R"($)"}; kak_assert(vm.exec("foo\n")); kak_assert(*vm.captures()[0] == '\n'); } { TestVM vm{R"(fo{1,})"}; kak_assert(vm.exec("foo1fooo2")); kak_assert(*vm.captures()[1] == '2'); } { TestVM vm{R"((?<=f)oo(b[ae]r)?(?=baz))"}; kak_assert(vm.exec("foobarbazfoobazfooberbaz")); kak_assert(StringView{vm.captures()[0], vm.captures()[1]} == "oober"); kak_assert(StringView{vm.captures()[2], vm.captures()[3]} == "ber"); } { TestVM vm{R"((baz|boz|foo|qux)(? vm{R"(foo)"}; kak_assert(vm.exec("foofoo")); kak_assert(*vm.captures()[1] == 0); } { TestVM vm{R"($)"}; kak_assert(vm.exec("foo\nbar\nbaz\nqux", RegexExecFlags::NotEndOfLine)); kak_assert(StringView{vm.captures()[0]} == "\nqux"); kak_assert(vm.exec("foo\nbar\nbaz\nqux", RegexExecFlags::None)); kak_assert(StringView{vm.captures()[0]} == ""); } { TestVM vm{R"(^)"}; kak_assert(not vm.exec("foo", RegexExecFlags::NotBeginOfLine)); kak_assert(vm.exec("foo", RegexExecFlags::None)); kak_assert(vm.exec("foo\nbar", RegexExecFlags::None)); kak_assert(StringView{vm.captures()[0]} == "bar"); } { TestVM vm{R"(\A\w+)"}; kak_assert(vm.exec("foo\nbar\nbaz", RegexExecFlags::None)); kak_assert(StringView{vm.captures()[0], vm.captures()[1]} == "foo"); } { TestVM vm{R"(\b\w+\z)"}; kak_assert(vm.exec("foo\nbar\nbaz", RegexExecFlags::None)); kak_assert(StringView{vm.captures()[0], vm.captures()[1]} == "baz"); } { TestVM vm{R"(a[^\n]*\n|\n)"}; kak_assert(vm.exec("foo\nbar\nb", RegexExecFlags::None)); kak_assert(StringView{vm.captures()[0], vm.captures()[1]} == "ar\n"); } { TestVM<> vm{R"(()*)"}; kak_assert(not vm.exec(" ")); } { TestVM vm{R"(\b(? vm{R"((?=))"}; kak_assert(vm.exec("")); } { TestVM vm{R"((?i)FOO)"}; kak_assert(vm.exec("foo", RegexExecFlags::None)); } { TestVM vm{R"(.?(?=foo))"}; kak_assert(vm.exec("afoo", RegexExecFlags::None)); kak_assert(*vm.captures()[0] == 'a'); } { TestVM vm{R"((?i)(?=Foo))"}; kak_assert(vm.exec("fOO", RegexExecFlags::None)); kak_assert(*vm.captures()[0] == 'f'); } { TestVM<> vm{R"([d-ea-dcf-k]+)"}; kak_assert(vm.exec("abcde")); } { TestVM<> vm{R"((?i)[a-c]+)"}; kak_assert(vm.exec("bCa")); } { TestVM<> vm{R"([\t-\r]+)"}; kak_assert(vm.exec("\t\n\v\f\r")); } { TestVM<> vm{R"([\t-\r]\h+[\t-\r])"}; kak_assert(vm.character_classes.size() == 1); kak_assert(vm.exec("\n \f")); } { TestVM<> vm{R"([^\x00-\x7F]+)"}; kak_assert(not vm.exec("ascii")); kak_assert(vm.exec("←↑→↓")); kak_assert(vm.exec("😄😊😉")); } { TestVM<> vm{R"([^\u000000-\u00ffff]+)"}; kak_assert(not vm.exec("ascii")); kak_assert(not vm.exec("←↑→↓")); kak_assert(vm.exec("😄😊😉")); } { TestVM vm{R"(д)"}; kak_assert(vm.exec("д", RegexExecFlags::None)); } { TestVM vm{"ab"}; const char str[] = "fa😄ab"; kak_assert(not vm.exec(str, str+4, str, str + sizeof(str)-1, RegexExecFlags::None)); } { TestVM<> vm{R"(\0\x0A\u00260e\u00260F)"}; const char str[] = "\0\n☎☏"; // work around the null byte in the literal kak_assert(vm.exec({str, str + sizeof(str)-1})); } { TestVM vm{".{40}"}; kak_assert(vm.exec("xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx", RegexExecFlags::None)); } { auto eq = [](const CompiledRegex::NamedCapture& lhs, const CompiledRegex::NamedCapture& rhs) { return lhs.name == rhs.name and lhs.index == rhs.index; }; TestVM<> vm{R"((?\d+)-(?\d+)-(?\d+))"}; kak_assert(vm.exec("2019-01-03", RegexExecFlags::None)); kak_assert(StringView{vm.captures()[2], vm.captures()[3]} == "2019"); kak_assert(StringView{vm.captures()[4], vm.captures()[5]} == "01"); kak_assert(StringView{vm.captures()[6], vm.captures()[7]} == "03"); kak_assert(vm.named_captures.size() == 3); kak_assert(eq(vm.named_captures[0], {"year", 1})); kak_assert(eq(vm.named_captures[1], {"month", 2})); kak_assert(eq(vm.named_captures[2], {"day", 3})); } }}; }