#include "regex_impl.hh" #include "vector.hh" #include "unit_tests.hh" #include "string.hh" #include "unicode.hh" #include "utf8.hh" #include "utf8_iterator.hh" #include "exception.hh" #include "array_view.hh" #include "buffer_utils.hh" namespace Kakoune { struct ParsedRegex { enum Op { Literal, AnyChar, Matcher, Sequence, Alternation, LineStart, LineEnd, WordBoundary, NotWordBoundary, SubjectBegin, SubjectEnd, ResetStart, LookAhead, LookBehind, NegativeLookAhead, NegativeLookBehind, }; struct Quantifier { enum Type { One, Optional, RepeatZeroOrMore, RepeatOneOrMore, RepeatMinMax, }; Type type = One; bool greedy = true; int min = -1, max = -1; bool allows_none() const { return type == Quantifier::Optional or type == Quantifier::RepeatZeroOrMore or (type == Quantifier::RepeatMinMax and min <= 0); } bool allows_infinite_repeat() const { return type == Quantifier::RepeatZeroOrMore or type == Quantifier::RepeatOneOrMore or (type == Quantifier::RepeatMinMax and max == -1); }; }; struct AstNode { Op op; Codepoint value; Quantifier quantifier; Vector> children; }; using AstNodePtr = std::unique_ptr; AstNodePtr ast; size_t capture_count; Vector> matchers; }; // Recursive descent parser based on naming used in the ECMAScript // standard, although the syntax is not fully compatible. struct RegexParser { RegexParser(StringView re) : m_regex{re}, m_pos{re.begin(), re} { m_parsed_regex.capture_count = 1; m_parsed_regex.ast = disjunction(0); } ParsedRegex get_parsed_regex() { return std::move(m_parsed_regex); } static ParsedRegex parse(StringView re) { return RegexParser{re}.get_parsed_regex(); } private: struct InvalidPolicy { Codepoint operator()(Codepoint cp) { throw runtime_error{"Invalid utf8 in regex"}; } }; using Iterator = utf8::iterator; using AstNodePtr = ParsedRegex::AstNodePtr; AstNodePtr disjunction(unsigned capture = -1) { AstNodePtr node = alternative(); if (at_end() or *m_pos != '|') { node->value = capture; return node; } ++m_pos; AstNodePtr res = new_node(ParsedRegex::Alternation); res->children.push_back(std::move(node)); res->children.push_back(disjunction()); res->value = capture; return res; } AstNodePtr alternative(ParsedRegex::Op op = ParsedRegex::Sequence) { AstNodePtr res = new_node(op); while (auto node = term()) res->children.push_back(std::move(node)); if (res->children.empty()) parse_error("empty alternative"); return res; } AstNodePtr term() { if (auto node = assertion()) return node; if (auto node = atom()) { node->quantifier = quantifier(); return node; } return nullptr; } AstNodePtr assertion() { if (at_end()) return nullptr; switch (*m_pos) { case '^': ++m_pos; return new_node(ParsedRegex::LineStart); case '$': ++m_pos; return new_node(ParsedRegex::LineEnd); case '\\': if (m_pos+1 == m_regex.end()) return nullptr; switch (*(m_pos+1)) { case 'b': m_pos += 2; return new_node(ParsedRegex::WordBoundary); case 'B': m_pos += 2; return new_node(ParsedRegex::NotWordBoundary); case '`': m_pos += 2; return new_node(ParsedRegex::SubjectBegin); case '\'': m_pos += 2; return new_node(ParsedRegex::SubjectEnd); case 'K': m_pos += 2; return new_node(ParsedRegex::ResetStart); } break; /* TODO: look ahead, look behind */ } return nullptr; } AstNodePtr atom() { if (at_end()) return nullptr; const Codepoint cp = *m_pos; switch (cp) { case '.': ++m_pos; return new_node(ParsedRegex::AnyChar); case '(': { auto advance = [&]() { if (++m_pos == m_regex.end()) parse_error("unclosed parenthesis"); return *m_pos; }; AstNodePtr content; if (advance() == '?') { auto c = advance(); if (c == ':') content = disjunction(-1); else if (contains("=!<", c)) { bool behind = false; if (c == '<') { advance(); behind = true; } auto type = *m_pos++; if (type == '=') content = alternative(behind ? ParsedRegex::LookBehind : ParsedRegex::LookAhead); else if (type == '!') content = alternative(behind ? ParsedRegex::NegativeLookBehind : ParsedRegex::NegativeLookAhead); else parse_error("invalid disjunction"); validate_lookaround(content); } else parse_error("invalid disjunction"); } else content = disjunction(m_parsed_regex.capture_count++); if (at_end() or *m_pos != ')') parse_error("unclosed parenthesis"); ++m_pos; return content; } case '\\': ++m_pos; return atom_escape(); case '[': ++m_pos; return character_class(); case '|': case ')': return nullptr; default: if (contains("^$.*+?[]{}", cp)) parse_error(format("unexpected '{}'", cp)); ++m_pos; return new_node(ParsedRegex::Literal, cp); } } AstNodePtr atom_escape() { const Codepoint cp = *m_pos++; if (cp == 'Q') { auto escaped_sequence = new_node(ParsedRegex::Sequence); constexpr StringView end_mark{"\\E"}; auto quote_end = std::search(m_pos.base(), m_regex.end(), end_mark.begin(), end_mark.end()); while (m_pos != quote_end) escaped_sequence->children.push_back(new_node(ParsedRegex::Literal, *m_pos++)); if (quote_end != m_regex.end()) m_pos += 2; return escaped_sequence; } // CharacterClassEscape for (auto& character_class : character_class_escapes) { if (character_class.cp == cp) { auto matcher_id = m_parsed_regex.matchers.size(); m_parsed_regex.matchers.push_back( [ctype = character_class.ctype ? wctype(character_class.ctype) : (wctype_t)0, chars = character_class.additional_chars] (Codepoint cp) { return (ctype != 0 and iswctype(cp, ctype)) or contains(chars, cp); }); return new_node(ParsedRegex::Matcher, matcher_id); } } // CharacterEscape struct { Codepoint name; Codepoint value; } control_escapes[] = { { 'f', '\f' }, { 'n', '\n' }, { 'r', '\r' }, { 't', '\t' }, { 'v', '\v' } }; for (auto& control : control_escapes) { if (control.name == cp) return new_node(ParsedRegex::Literal, control.value); } // TOOD: \c..., \0..., '\0x...', \u... if (contains("^$\\.*+?()[]{}|", cp)) // SyntaxCharacter return new_node(ParsedRegex::Literal, cp); parse_error(format("unknown atom escape '{}'", cp)); } AstNodePtr character_class() { const bool negative = m_pos != m_regex.end() and *m_pos == '^'; if (negative) ++m_pos; struct CharRange { Codepoint min, max; }; Vector ranges; Vector excluded; Vector> ctypes; while (m_pos != m_regex.end() and *m_pos != ']') { const auto cp = *m_pos++; if (cp == '-') { ranges.push_back({ '-', '-' }); continue; } if (at_end()) break; if (cp == '\\') { auto it = find_if(character_class_escapes, [cp = *m_pos](auto& t) { return t.cp == cp; }); if (it != std::end(character_class_escapes)) { if (it->ctype) ctypes.push_back({wctype(it->ctype), not it->neg}); for (auto& c : it->additional_chars) // TODO: handle negative case { if (it->neg) excluded.push_back((Codepoint)c); else ranges.push_back({(Codepoint)c, (Codepoint)c}); } ++m_pos; continue; } } CharRange range = { cp, cp }; if (*m_pos == '-') { if (++m_pos == m_regex.end()) break; if (*m_pos != ']') { range.max = *m_pos++; if (range.min > range.max) parse_error("invalid range specified"); } else { ranges.push_back(range); range = { '-', '-' }; } } ranges.push_back(range); } if (at_end()) parse_error("unclosed character class"); ++m_pos; auto matcher = [ranges = std::move(ranges), ctypes = std::move(ctypes), excluded = std::move(excluded), negative] (Codepoint cp) { auto found = contains_that(ranges, [cp](auto& r) { return r.min <= cp and cp <= r.max; }) or contains_that(ctypes, [cp](auto& c) { return (bool)iswctype(cp, c.first) == c.second; }) or (not excluded.empty() and not contains(excluded, cp)); return negative ? not found : found; }; auto matcher_id = m_parsed_regex.matchers.size(); m_parsed_regex.matchers.push_back(std::move(matcher)); return new_node(ParsedRegex::Matcher, matcher_id); } ParsedRegex::Quantifier quantifier() { if (at_end()) return {ParsedRegex::Quantifier::One}; auto read_int = [](auto& pos, auto begin, auto end) { int res = 0; for (; pos != end; ++pos) { const auto cp = *pos; if (cp < '0' or cp > '9') return pos == begin ? -1 : res; res = res * 10 + cp - '0'; } return res; }; auto check_greedy = [&]() { if (at_end() or *m_pos != '?') return true; ++m_pos; return false; }; switch (*m_pos) { case '*': ++m_pos; return {ParsedRegex::Quantifier::RepeatZeroOrMore, check_greedy()}; case '+': ++m_pos; return {ParsedRegex::Quantifier::RepeatOneOrMore, check_greedy()}; case '?': ++m_pos; return {ParsedRegex::Quantifier::Optional, check_greedy()}; case '{': { auto it = m_pos+1; const int min = read_int(it, it, m_regex.end()); int max = min; if (*it == ',') { ++it; max = read_int(it, it, m_regex.end()); } if (*it++ != '}') parse_error("expected closing bracket"); m_pos = it; return {ParsedRegex::Quantifier::RepeatMinMax, true, min, max}; } default: return {ParsedRegex::Quantifier::One}; } } static AstNodePtr new_node(ParsedRegex::Op op, Codepoint value = -1, ParsedRegex::Quantifier quantifier = {ParsedRegex::Quantifier::One}) { return AstNodePtr{new ParsedRegex::AstNode{op, value, quantifier, {}}}; } bool at_end() const { return m_pos == m_regex.end(); } [[gnu::noreturn]] void parse_error(StringView error) { throw runtime_error(format("regex parse error: {} at '{}<<>>{}'", error, StringView{m_regex.begin(), m_pos.base()}, StringView{m_pos.base(), m_regex.end()})); } void validate_lookaround(const AstNodePtr& node) { for (auto& child : node->children) if (child->op != ParsedRegex::Literal) parse_error("Lookaround can only contain literals"); } ParsedRegex m_parsed_regex; StringView m_regex; Iterator m_pos; struct CharacterClassEscape { Codepoint cp; const char* ctype; StringView additional_chars; bool neg; }; StringView peek(ByteCount count) { return StringView{m_pos.base(), m_regex.end()}.substr(0, count); } static const CharacterClassEscape character_class_escapes[8]; }; // For some reason Gcc fails to link if this is constexpr const RegexParser::CharacterClassEscape RegexParser::character_class_escapes[8] = { { 'd', "digit", "", false }, { 'D', "digit", "", true }, { 'w', "alnum", "_", false }, { 'W', "alnum", "_", true }, { 's', "space", "", false }, { 'S', "space", "", true }, { 'h', nullptr, " \t", false }, { 'H', nullptr, " \t", true }, }; struct CompiledRegex { enum Op : char { Match, Literal, AnyChar, Matcher, Jump, Split_PrioritizeParent, Split_PrioritizeChild, Save, LineStart, LineEnd, WordBoundary, NotWordBoundary, SubjectBegin, SubjectEnd, LookAhead, LookBehind, NegativeLookAhead, NegativeLookBehind, }; using Offset = unsigned; Vector bytecode; Vector> matchers; size_t save_count; }; struct RegexCompiler { RegexCompiler(const ParsedRegex& parsed_regex) : m_parsed_regex{parsed_regex} { write_search_prefix(); compile_node(m_parsed_regex.ast); push_op(CompiledRegex::Match); m_program.matchers = m_parsed_regex.matchers; m_program.save_count = m_parsed_regex.capture_count * 2; } CompiledRegex get_compiled_regex() { return std::move(m_program); } using Offset = CompiledRegex::Offset; static constexpr Offset search_prefix_size = 3 + 2 * sizeof(Offset); static CompiledRegex compile(StringView re) { return RegexCompiler{RegexParser::parse(re)}.get_compiled_regex(); } private: Offset compile_node_inner(const ParsedRegex::AstNodePtr& node) { const auto start_pos = m_program.bytecode.size(); const Codepoint capture = (node->op == ParsedRegex::Alternation or node->op == ParsedRegex::Sequence) ? node->value : -1; if (capture != -1) { push_op(CompiledRegex::Save); push_byte(capture * 2); } Vector goto_inner_end_offsets; switch (node->op) { case ParsedRegex::Literal: push_op(CompiledRegex::Literal); push_codepoint(node->value); break; case ParsedRegex::AnyChar: push_op(CompiledRegex::AnyChar); break; case ParsedRegex::Matcher: push_op(CompiledRegex::Matcher); push_byte(node->value); case ParsedRegex::Sequence: for (auto& child : node->children) compile_node(child); break; case ParsedRegex::Alternation: { auto& children = node->children; kak_assert(children.size() == 2); push_op(CompiledRegex::Split_PrioritizeParent); auto offset = alloc_offset(); compile_node(children[0]); push_op(CompiledRegex::Jump); goto_inner_end_offsets.push_back(alloc_offset()); auto right_pos = compile_node(children[1]); get_offset(offset) = right_pos; break; } case ParsedRegex::LookAhead: push_op(CompiledRegex::LookAhead); push_string(node->children); break; case ParsedRegex::LookBehind: push_op(CompiledRegex::LookBehind); push_string(node->children, true); break; case ParsedRegex::NegativeLookAhead: push_op(CompiledRegex::NegativeLookAhead); push_string(node->children); break; case ParsedRegex::NegativeLookBehind: push_op(CompiledRegex::NegativeLookBehind); push_string(node->children, true); break; case ParsedRegex::LineStart: push_op(CompiledRegex::LineStart); break; case ParsedRegex::LineEnd: push_op(CompiledRegex::LineEnd); break; case ParsedRegex::WordBoundary: push_op(CompiledRegex::WordBoundary); break; case ParsedRegex::NotWordBoundary: push_op(CompiledRegex::NotWordBoundary); break; case ParsedRegex::SubjectBegin: push_op(CompiledRegex::SubjectBegin); break; case ParsedRegex::SubjectEnd: push_op(CompiledRegex::SubjectEnd); break; case ParsedRegex::ResetStart: push_op(CompiledRegex::Save); push_byte(0); break; } for (auto& offset : goto_inner_end_offsets) get_offset(offset) = m_program.bytecode.size(); if (capture != -1) { push_op(CompiledRegex::Save); push_byte(capture * 2 + 1); } return start_pos; } Offset compile_node(const ParsedRegex::AstNodePtr& node) { Offset pos = m_program.bytecode.size(); Vector goto_end_offsets; auto& quantifier = node->quantifier; if (quantifier.allows_none()) { push_op(quantifier.greedy ? CompiledRegex::Split_PrioritizeParent : CompiledRegex::Split_PrioritizeChild); goto_end_offsets.push_back(alloc_offset()); } auto inner_pos = compile_node_inner(node); // Write the node multiple times when we have a min count quantifier for (int i = 1; i < quantifier.min; ++i) inner_pos = compile_node_inner(node); if (quantifier.allows_infinite_repeat()) { push_op(quantifier.greedy ? CompiledRegex::Split_PrioritizeChild : CompiledRegex::Split_PrioritizeParent); get_offset(alloc_offset()) = inner_pos; } // Write the node as an optional match for the min -> max counts else for (int i = std::max(1, quantifier.min); // STILL UGLY ! i < quantifier.max; ++i) { push_op(quantifier.greedy ? CompiledRegex::Split_PrioritizeParent : CompiledRegex::Split_PrioritizeChild); goto_end_offsets.push_back(alloc_offset()); compile_node_inner(node); } for (auto offset : goto_end_offsets) get_offset(offset) = m_program.bytecode.size(); return pos; } // Add a '.*' as the first instructions for the search use case void write_search_prefix() { kak_assert(m_program.bytecode.empty()); push_op(CompiledRegex::Split_PrioritizeChild); get_offset(alloc_offset()) = search_prefix_size; push_op(CompiledRegex::AnyChar); push_op(CompiledRegex::Split_PrioritizeParent); get_offset(alloc_offset()) = 1 + sizeof(Offset); } Offset alloc_offset() { auto pos = m_program.bytecode.size(); m_program.bytecode.resize(pos + sizeof(Offset)); return pos; } Offset& get_offset(Offset pos) { return *reinterpret_cast(&m_program.bytecode[pos]); } void push_op(CompiledRegex::Op op) { m_program.bytecode.push_back(op); } void push_byte(char byte) { m_program.bytecode.push_back(byte); } void push_codepoint(Codepoint cp) { utf8::dump(std::back_inserter(m_program.bytecode), cp); } void push_string(const Vector& codepoints, bool reversed = false) { if (codepoints.size() > 127) throw runtime_error{"Too long literal string"}; push_byte(codepoints.size()); if (reversed) for (auto& cp : codepoints | reverse()) push_codepoint(cp->value); else for (auto& cp : codepoints) push_codepoint(cp->value); } CompiledRegex m_program; const ParsedRegex& m_parsed_regex; }; void dump_regex(const CompiledRegex& program) { for (auto pos = program.bytecode.data(), end = program.bytecode.data() + program.bytecode.size(); pos < end; ) { printf("%4zd ", pos - program.bytecode.data()); const auto op = (CompiledRegex::Op)*pos++; switch (op) { case CompiledRegex::Literal: printf("literal %lc\n", utf8::read_codepoint(pos, (const char*)nullptr)); break; case CompiledRegex::AnyChar: printf("any char\n"); break; case CompiledRegex::Jump: printf("jump %u\n", *reinterpret_cast(&*pos)); pos += sizeof(CompiledRegex::Offset); break; case CompiledRegex::Split_PrioritizeParent: case CompiledRegex::Split_PrioritizeChild: { printf("split (prioritize %s) %u\n", op == CompiledRegex::Split_PrioritizeParent ? "parent" : "child", *reinterpret_cast(&*pos)); pos += sizeof(CompiledRegex::Offset); break; } case CompiledRegex::Save: printf("save %d\n", *pos++); break; case CompiledRegex::Matcher: printf("matcher %d\n", *pos++); break; case CompiledRegex::LineStart: printf("line start\n"); break; case CompiledRegex::LineEnd: printf("line end\n"); break; case CompiledRegex::WordBoundary: printf("word boundary\n"); break; case CompiledRegex::NotWordBoundary: printf("not word boundary\n"); break; case CompiledRegex::SubjectBegin: printf("subject begin\n"); break; case CompiledRegex::SubjectEnd: printf("subject end\n"); break; case CompiledRegex::LookAhead: case CompiledRegex::NegativeLookAhead: case CompiledRegex::LookBehind: case CompiledRegex::NegativeLookBehind: { int count = *pos++; StringView str{pos, pos + count}; const char* name = nullptr; if (op == CompiledRegex::LookAhead) name = "look ahead"; if (op == CompiledRegex::NegativeLookAhead) name = "negative look ahead"; if (op == CompiledRegex::LookBehind) name = "look behind"; if (op == CompiledRegex::NegativeLookBehind) name = "negative look behind"; printf("%s (%s)\n", name, (const char*)str.zstr()); pos += count; break; } case CompiledRegex::Match: printf("match\n"); } } } template struct ThreadedRegexVM { ThreadedRegexVM(const CompiledRegex& program) : m_program{program} {} struct Thread { const char* inst; Vector saves = {}; }; enum class StepResult { Consumed, Matched, Failed }; StepResult step(size_t thread_index) { const auto prog_start = m_program.bytecode.data(); const auto prog_end = prog_start + m_program.bytecode.size(); while (true) { auto& thread = m_threads[thread_index]; const Codepoint cp = m_pos == m_end ? 0 : *m_pos; const CompiledRegex::Op op = (CompiledRegex::Op)*thread.inst++; switch (op) { case CompiledRegex::Literal: if (utf8::read_codepoint(thread.inst, prog_end) == cp) return StepResult::Consumed; return StepResult::Failed; case CompiledRegex::AnyChar: return StepResult::Consumed; case CompiledRegex::Jump: { auto inst = prog_start + *reinterpret_cast(thread.inst); // if instruction is already going to be executed by another thread, drop this thread if (std::find_if(m_threads.begin(), m_threads.end(), [inst](const Thread& t) { return t.inst == inst; }) != m_threads.end()) return StepResult::Failed; thread.inst = inst; break; } case CompiledRegex::Split_PrioritizeParent: { add_thread(thread_index+1, *reinterpret_cast(thread.inst), thread.saves); // thread is invalidated now, as we mutated the m_thread vector m_threads[thread_index].inst += sizeof(CompiledRegex::Offset); break; } case CompiledRegex::Split_PrioritizeChild: { add_thread(thread_index+1, thread.inst + sizeof(CompiledRegex::Offset) - prog_start, thread.saves); // thread is invalidated now, as we mutated the m_thread vector m_threads[thread_index].inst = prog_start + *reinterpret_cast(m_threads[thread_index].inst); break; } case CompiledRegex::Save: { const char index = *thread.inst++; thread.saves[index] = m_pos.base(); break; } case CompiledRegex::Matcher: { const int matcher_id = *thread.inst++; return m_program.matchers[matcher_id](*m_pos) ? StepResult::Consumed : StepResult::Failed; } case CompiledRegex::LineStart: if (not is_line_start()) return StepResult::Failed; break; case CompiledRegex::LineEnd: if (not is_line_end()) return StepResult::Failed; break; case CompiledRegex::WordBoundary: if (not is_word_boundary()) return StepResult::Failed; break; case CompiledRegex::NotWordBoundary: if (is_word_boundary()) return StepResult::Failed; break; case CompiledRegex::SubjectBegin: if (m_pos != m_begin) return StepResult::Failed; break; case CompiledRegex::SubjectEnd: if (m_pos != m_end) return StepResult::Failed; break; case CompiledRegex::LookAhead: case CompiledRegex::NegativeLookAhead: { int count = *thread.inst++; for (auto it = m_pos; count and it != m_end; ++it, --count) if (*it != utf8::read(thread.inst)) break; if ((op == CompiledRegex::LookAhead and count != 0) or (op == CompiledRegex::NegativeLookAhead and count == 0)) return StepResult::Failed; thread.inst = utf8::advance(thread.inst, prog_end, CharCount{count - 1}); break; } case CompiledRegex::LookBehind: case CompiledRegex::NegativeLookBehind: { int count = *thread.inst++; for (auto it = m_pos-1; count and it >= m_begin; --it, --count) if (*it != utf8::read(thread.inst)) break; if ((op == CompiledRegex::LookBehind and count != 0) or (op == CompiledRegex::NegativeLookBehind and count == 0)) return StepResult::Failed; thread.inst = utf8::advance(thread.inst, prog_end, CharCount{count - 1}); break; } case CompiledRegex::Match: thread.inst = nullptr; return StepResult::Matched; } } return StepResult::Failed; } bool exec(StringView data, bool match = true, bool longest = false) { bool found_match = false; m_threads.clear(); add_thread(0, match ? RegexCompiler::search_prefix_size : 0, Vector(m_program.save_count, nullptr)); m_begin = data.begin(); m_end = data.end(); for (m_pos = Utf8It{m_begin, m_begin, m_end}; m_pos != m_end; ++m_pos) { for (int i = 0; i < m_threads.size(); ++i) { const auto res = step(i); if (res == StepResult::Matched) { if (match) continue; // We are not at end, this is not a full match m_captures = std::move(m_threads[i].saves); found_match = true; m_threads.resize(i); // remove this and lower priority threads if (not longest) return true; } else if (res == StepResult::Failed) m_threads[i].inst = nullptr; } m_threads.erase(std::remove_if(m_threads.begin(), m_threads.end(), [](const Thread& t) { return t.inst == nullptr; }), m_threads.end()); if (m_threads.empty()) return found_match; } // Step remaining threads to see if they match without consuming anything else for (int i = 0; i < m_threads.size(); ++i) { if (step(i) == StepResult::Matched) { m_captures = std::move(m_threads[i].saves); found_match = true; m_threads.resize(i); // remove this and lower priority threads if (not longest) return true; } } return found_match; } void add_thread(int index, CompiledRegex::Offset pos, Vector saves) { const char* inst = m_program.bytecode.data() + pos; if (std::find_if(m_threads.begin(), m_threads.end(), [inst](const Thread& t) { return t.inst == inst; }) == m_threads.end()) m_threads.insert(m_threads.begin() + index, {inst, std::move(saves)}); } bool is_line_start() const { return m_pos == m_begin or *(m_pos-1) == '\n'; } bool is_line_end() const { return m_pos == m_end or *m_pos == '\n'; } bool is_word_boundary() const { return m_pos == m_begin or m_pos == m_end or is_word(*(m_pos-1)) != is_word(*m_pos); } const CompiledRegex& m_program; Vector m_threads; using Utf8It = utf8::iterator; Iterator m_begin; Iterator m_end; Utf8It m_pos; Vector m_captures; }; void validate_regex(StringView re) { try { RegexParser{re}; } catch (runtime_error& err) { write_to_debug_buffer(err.what()); } } auto test_regex = UnitTest{[]{ struct TestVM : ThreadedRegexVM { TestVM(StringView re, bool dump = false) : ThreadedRegexVM{m_program}, m_program{RegexCompiler::compile(re)} { if (dump) dump_regex(m_program); } CompiledRegex m_program; }; { TestVM vm{R"(a*b)"}; kak_assert(vm.exec("b")); kak_assert(vm.exec("ab")); kak_assert(vm.exec("aaab")); kak_assert(not vm.exec("acb")); kak_assert(not vm.exec("abc")); kak_assert(not vm.exec("")); } { TestVM vm{R"(^a.*b$)"}; kak_assert(vm.exec("afoob")); kak_assert(vm.exec("ab")); kak_assert(not vm.exec("bab")); kak_assert(not vm.exec("")); } { TestVM vm{R"(^(foo|qux|baz)+(bar)?baz$)"}; kak_assert(vm.exec("fooquxbarbaz")); kak_assert(StringView{vm.m_captures[2], vm.m_captures[3]} == "qux"); kak_assert(not vm.exec("fooquxbarbaze")); kak_assert(not vm.exec("quxbar")); kak_assert(not vm.exec("blahblah")); kak_assert(vm.exec("bazbaz")); kak_assert(vm.exec("quxbaz")); } { TestVM vm{R"(.*\b(foo|bar)\b.*)"}; kak_assert(vm.exec("qux foo baz")); kak_assert(StringView{vm.m_captures[2], vm.m_captures[3]} == "foo"); kak_assert(not vm.exec("quxfoobaz")); kak_assert(vm.exec("bar")); kak_assert(not vm.exec("foobar")); } { TestVM vm{R"((foo|bar))"}; kak_assert(vm.exec("foo")); kak_assert(vm.exec("bar")); kak_assert(not vm.exec("foobar")); } { TestVM vm{R"(a{3,5}b)"}; kak_assert(not vm.exec("aab")); kak_assert(vm.exec("aaab")); kak_assert(not vm.exec("aaaaaab")); kak_assert(vm.exec("aaaaab")); } { TestVM vm{R"(a{3}b)"}; kak_assert(not vm.exec("aab")); kak_assert(vm.exec("aaab")); kak_assert(not vm.exec("aaaab")); } { TestVM vm{R"(a{3,}b)"}; kak_assert(not vm.exec("aab")); kak_assert(vm.exec("aaab")); kak_assert(vm.exec("aaaaab")); } { TestVM vm{R"(a{,3}b)"}; kak_assert(vm.exec("b")); kak_assert(vm.exec("ab")); kak_assert(vm.exec("aaab")); kak_assert(not vm.exec("aaaab")); } { TestVM vm{R"(f.*a(.*o))"}; kak_assert(vm.exec("blahfoobarfoobaz", false, true)); kak_assert(StringView{vm.m_captures[0], vm.m_captures[1]} == "foobarfoo"); kak_assert(StringView{vm.m_captures[2], vm.m_captures[3]} == "rfoo"); kak_assert(vm.exec("mais que fais la police", false, true)); kak_assert(StringView{vm.m_captures[0], vm.m_captures[1]} == "fais la po"); kak_assert(StringView{vm.m_captures[2], vm.m_captures[3]} == " po"); } { TestVM vm{R"([àb-dX-Z-]{3,5})"}; kak_assert(vm.exec("cà-Y")); kak_assert(not vm.exec("àeY")); kak_assert(vm.exec("dcbàX")); kak_assert(not vm.exec("efg")); } { TestVM vm{R"(\d{3})"}; kak_assert(vm.exec("123")); kak_assert(not vm.exec("1x3")); } { TestVM vm{R"([-\d]+)"}; kak_assert(vm.exec("123-456")); kak_assert(not vm.exec("123_456")); } { TestVM vm{R"([ \H]+)"}; kak_assert(vm.exec("abc ")); kak_assert(not vm.exec("a \t")); } { TestVM vm{R"(\Q{}[]*+?\Ea+)"}; kak_assert(vm.exec("{}[]*+?aa")); } { TestVM vm{R"(\Q...)"}; kak_assert(vm.exec("...")); kak_assert(not vm.exec("bla")); } { TestVM vm{R"(foo\Kbar)"}; kak_assert(vm.exec("foobar", true, true)); kak_assert(StringView{vm.m_captures[0], vm.m_captures[1]} == "bar"); kak_assert(not vm.exec("bar", true, true)); } { TestVM vm{R"((fo+?).*)"}; kak_assert(vm.exec("foooo", true, true)); kak_assert(StringView{vm.m_captures[2], vm.m_captures[3]} == "fo"); } { TestVM vm{R"((?=foo).)"}; kak_assert(vm.exec("barfoo", false, true)); kak_assert(StringView{vm.m_captures[0], vm.m_captures[1]} == "f"); } { TestVM vm{R"((?!foo)...)"}; kak_assert(not vm.exec("foo")); kak_assert(vm.exec("qux")); } { TestVM vm{R"(...(?<=foo))"}; kak_assert(vm.exec("foo")); kak_assert(not vm.exec("qux")); } { TestVM vm{R"(...(?