kakoune/src/regex_impl.cc

1228 lines
42 KiB
C++
Raw Normal View History

#include "regex_impl.hh"
#include "exception.hh"
#include "string.hh"
#include "unicode.hh"
#include "unit_tests.hh"
#include "utf8.hh"
#include "utf8_iterator.hh"
#include "string_utils.hh"
#include "vector.hh"
namespace Kakoune
{
struct ParsedRegex
{
enum Op : char
{
Literal,
AnyChar,
Matcher,
Sequence,
Alternation,
LineStart,
LineEnd,
WordBoundary,
NotWordBoundary,
SubjectBegin,
SubjectEnd,
ResetStart,
LookAhead,
NegativeLookAhead,
LookBehind,
NegativeLookBehind,
};
struct Quantifier
{
enum Type : char
{
One,
Optional,
RepeatZeroOrMore,
RepeatOneOrMore,
RepeatMinMax,
};
Type type = One;
2017-09-28 11:50:04 +02:00
bool greedy = true;
int min = -1, max = -1;
bool allows_none() const
{
return type == Quantifier::Optional or
type == Quantifier::RepeatZeroOrMore or
(type == Quantifier::RepeatMinMax and min <= 0);
}
bool allows_infinite_repeat() const
{
return type == Quantifier::RepeatZeroOrMore or
type == Quantifier::RepeatOneOrMore or
(type == Quantifier::RepeatMinMax and max == -1);
};
};
struct AstNode;
using AstNodePtr = std::unique_ptr<AstNode>;
struct AstNode
{
Op op;
bool ignore_case;
Codepoint value;
Quantifier quantifier;
Vector<AstNodePtr> children;
};
AstNodePtr ast;
size_t capture_count;
Vector<std::function<bool (Codepoint)>> matchers;
};
// Recursive descent parser based on naming used in the ECMAScript
2017-09-19 04:57:02 +02:00
// standard, although the syntax is not fully compatible.
struct RegexParser
2017-09-17 12:15:43 +02:00
{
RegexParser(StringView re)
: m_regex{re}, m_pos{re.begin(), re}
{
m_parsed_regex.capture_count = 1;
m_parsed_regex.ast = disjunction(0);
}
ParsedRegex get_parsed_regex() { return std::move(m_parsed_regex); }
static ParsedRegex parse(StringView re) { return RegexParser{re}.get_parsed_regex(); }
2017-09-17 12:15:43 +02:00
private:
struct InvalidPolicy
{
Codepoint operator()(Codepoint cp) { throw regex_error{"Invalid utf8 in regex"}; }
};
using Iterator = utf8::iterator<const char*, Codepoint, int, InvalidPolicy>;
using AstNodePtr = ParsedRegex::AstNodePtr;
AstNodePtr disjunction(unsigned capture = -1)
{
AstNodePtr node = alternative();
if (at_end() or *m_pos != '|')
2017-09-19 09:56:21 +02:00
{
node->value = capture;
2017-09-17 12:15:43 +02:00
return node;
2017-09-19 09:56:21 +02:00
}
2017-09-17 12:15:43 +02:00
AstNodePtr res = new_node(ParsedRegex::Alternation);
2017-09-19 09:56:21 +02:00
res->value = capture;
res->children.push_back(std::move(node));
do
{
++m_pos;
res->children.push_back(alternative());
}
while (not at_end() and *m_pos == '|');
2017-09-17 12:15:43 +02:00
return res;
}
AstNodePtr alternative(ParsedRegex::Op op = ParsedRegex::Sequence)
2017-09-17 12:15:43 +02:00
{
AstNodePtr res = new_node(op);
while (auto node = term())
res->children.push_back(std::move(node));
2017-09-17 12:15:43 +02:00
return res;
}
AstNodePtr term()
2017-09-17 12:15:43 +02:00
{
if (auto node = assertion())
2017-09-17 12:15:43 +02:00
return node;
if (auto node = atom())
{
node->quantifier = quantifier();
2017-09-17 12:15:43 +02:00
return node;
}
2017-09-17 12:15:43 +02:00
return nullptr;
}
AstNodePtr assertion()
2017-09-17 12:15:43 +02:00
{
if (at_end())
return nullptr;
switch (*m_pos)
{
case '^': ++m_pos; return new_node(ParsedRegex::LineStart);
case '$': ++m_pos; return new_node(ParsedRegex::LineEnd);
case '\\':
if (m_pos+1 == m_regex.end())
return nullptr;
switch (*(m_pos+1))
{
case 'b': m_pos += 2; return new_node(ParsedRegex::WordBoundary);
case 'B': m_pos += 2; return new_node(ParsedRegex::NotWordBoundary);
case 'A': m_pos += 2; return new_node(ParsedRegex::SubjectBegin);
case 'z': m_pos += 2; return new_node(ParsedRegex::SubjectEnd);
case 'K': m_pos += 2; return new_node(ParsedRegex::ResetStart);
}
break;
}
2017-09-17 12:15:43 +02:00
return nullptr;
}
AstNodePtr atom()
2017-09-17 12:15:43 +02:00
{
if (at_end())
return nullptr;
const Codepoint cp = *m_pos;
switch (cp)
{
case '.': ++m_pos; return new_node(ParsedRegex::AnyChar);
2017-09-17 12:15:43 +02:00
case '(':
{
auto advance = [&]() {
if (++m_pos == m_regex.end())
parse_error("unclosed parenthesis");
return *m_pos;
};
AstNodePtr content;
if (advance() == '?')
{
auto c = advance();
if (c == ':')
{
++m_pos;
content = disjunction(-1);
}
else if (contains("=!<", c))
{
bool behind = false;
if (c == '<')
{
advance();
behind = true;
}
auto type = *m_pos++;
if (type == '=')
content = alternative(behind ? ParsedRegex::LookBehind
: ParsedRegex::LookAhead);
else if (type == '!')
content = alternative(behind ? ParsedRegex::NegativeLookBehind
: ParsedRegex::NegativeLookAhead);
else
parse_error("invalid disjunction");
validate_lookaround(content);
}
else if (c == 'i' or c == 'I')
{
m_ignore_case = c == 'i';
if (advance() != ')')
parse_error("unclosed parenthesis");
++m_pos;
return atom(); // get next atom
}
else
parse_error("invalid disjunction");
}
else
content = disjunction(m_parsed_regex.capture_count++);
2017-09-19 09:56:21 +02:00
if (at_end() or *m_pos != ')')
parse_error("unclosed parenthesis");
++m_pos;
2017-09-17 12:15:43 +02:00
return content;
}
case '\\':
++m_pos;
return atom_escape();
case '[':
++m_pos;
return character_class();
2017-09-26 16:42:54 +02:00
case '|': case ')':
return nullptr;
2017-09-17 12:15:43 +02:00
default:
2017-09-26 16:42:54 +02:00
if (contains("^$.*+?[]{}", cp))
parse_error(format("unexpected '{}'", cp));
++m_pos;
return new_node(ParsedRegex::Literal, cp);
}
2017-09-17 12:15:43 +02:00
}
AstNodePtr atom_escape()
{
const Codepoint cp = *m_pos++;
if (cp == 'Q')
{
auto escaped_sequence = new_node(ParsedRegex::Sequence);
constexpr StringView end_mark{"\\E"};
auto quote_end = std::search(m_pos.base(), m_regex.end(), end_mark.begin(), end_mark.end());
while (m_pos != quote_end)
escaped_sequence->children.push_back(new_node(ParsedRegex::Literal, *m_pos++));
if (quote_end != m_regex.end())
m_pos += 2;
return escaped_sequence;
}
// CharacterClassEscape
auto class_it = find_if(character_class_escapes,
[cp = to_lower(cp)](auto& c) { return c.cp == cp; });
if (class_it != std::end(character_class_escapes))
{
auto matcher_id = m_parsed_regex.matchers.size();
m_parsed_regex.matchers.push_back(
[ctype = class_it->ctype ? wctype(class_it->ctype) : (wctype_t)0,
chars = class_it->additional_chars, neg = is_upper(cp)] (Codepoint cp) {
return ((ctype != 0 and iswctype(cp, ctype)) or contains(chars, cp)) != neg;
});
return new_node(ParsedRegex::Matcher, matcher_id);
}
// CharacterEscape
for (auto& control : control_escapes)
{
if (control.name == cp)
return new_node(ParsedRegex::Literal, control.value);
}
// TOOD: \c..., \0..., '\0x...', \u...
if (contains("^$\\.*+?()[]{}|", cp)) // SyntaxCharacter
return new_node(ParsedRegex::Literal, cp);
parse_error(format("unknown atom escape '{}'", cp));
}
AstNodePtr character_class()
{
const bool negative = m_pos != m_regex.end() and *m_pos == '^';
if (negative)
++m_pos;
struct CharRange { Codepoint min, max; };
Vector<CharRange> ranges;
Vector<Codepoint> excluded;
Vector<std::pair<wctype_t, bool>> ctypes;
while (m_pos != m_regex.end() and *m_pos != ']')
{
auto cp = *m_pos++;
if (cp == '-')
{
ranges.push_back({ '-', '-' });
continue;
}
if (at_end())
break;
if (cp == '\\')
{
auto it = find_if(character_class_escapes,
[cp = to_lower(*m_pos)](auto& t) { return t.cp == cp; });
if (it != std::end(character_class_escapes))
{
auto negative = is_upper(*m_pos);
if (it->ctype)
ctypes.push_back({wctype(it->ctype), not negative});
for (auto& c : it->additional_chars)
{
if (negative)
excluded.push_back((Codepoint)c);
else
ranges.push_back({(Codepoint)c, (Codepoint)c});
}
++m_pos;
continue;
}
else // its just an escaped character
{
cp = *m_pos++;
for (auto& control : control_escapes)
{
if (control.name == cp)
{
cp = control.value;
break;
}
}
}
}
CharRange range = { cp, cp };
if (*m_pos == '-')
{
if (++m_pos == m_regex.end())
break;
if (*m_pos != ']')
{
range.max = *m_pos++;
if (range.min > range.max)
parse_error("invalid range specified");
}
else
{
ranges.push_back(range);
range = { '-', '-' };
}
}
ranges.push_back(range);
}
if (at_end())
parse_error("unclosed character class");
++m_pos;
if (m_ignore_case)
{
for (auto& range : ranges)
{
range.min = to_lower(range.max);
range.max = to_lower(range.max);
}
for (auto& cp : excluded)
cp = to_lower(cp);
}
// Optimize the relatively common case of using a character class to
// escape a character, such as [*]
if (ctypes.empty() and excluded.empty() and not negative and
ranges.size() == 1 and ranges.front().min == ranges.front().max)
return new_node(ParsedRegex::Literal, ranges.front().min);
auto matcher = [ranges = std::move(ranges),
ctypes = std::move(ctypes),
excluded = std::move(excluded),
negative, ignore_case = m_ignore_case] (Codepoint cp) {
if (ignore_case)
cp = to_lower(cp);
auto found = contains_that(ranges, [cp](auto& r) {
return r.min <= cp and cp <= r.max;
}) or contains_that(ctypes, [cp](auto& c) {
return (bool)iswctype(cp, c.first) == c.second;
}) or (not excluded.empty() and not contains(excluded, cp));
return negative ? not found : found;
};
auto matcher_id = m_parsed_regex.matchers.size();
m_parsed_regex.matchers.push_back(std::move(matcher));
return new_node(ParsedRegex::Matcher, matcher_id);
}
ParsedRegex::Quantifier quantifier()
2017-09-17 12:15:43 +02:00
{
if (at_end())
return {ParsedRegex::Quantifier::One};
constexpr int max_repeat = 1000;
auto read_int = [max_repeat, this](auto& pos, auto begin, auto end) {
int res = 0;
for (; pos != end; ++pos)
{
const auto cp = *pos;
if (cp < '0' or cp > '9')
return pos == begin ? -1 : res;
res = res * 10 + cp - '0';
if (res > max_repeat)
parse_error(format("Explicit quantifier is too big, maximum is {}", max_repeat));
}
return res;
};
2017-09-28 11:50:04 +02:00
auto check_greedy = [&]() {
if (at_end() or *m_pos != '?')
return true;
++m_pos;
return false;
};
switch (*m_pos)
{
2017-09-28 11:50:04 +02:00
case '*': ++m_pos; return {ParsedRegex::Quantifier::RepeatZeroOrMore, check_greedy()};
case '+': ++m_pos; return {ParsedRegex::Quantifier::RepeatOneOrMore, check_greedy()};
case '?': ++m_pos; return {ParsedRegex::Quantifier::Optional, check_greedy()};
case '{':
{
auto it = m_pos+1;
const int min = read_int(it, it, m_regex.end());
int max = min;
if (*it == ',')
{
++it;
max = read_int(it, it, m_regex.end());
}
if (*it++ != '}')
parse_error("expected closing bracket");
m_pos = it;
return {ParsedRegex::Quantifier::RepeatMinMax, check_greedy(), min, max};
}
default: return {ParsedRegex::Quantifier::One};
}
2017-09-17 12:15:43 +02:00
}
AstNodePtr new_node(ParsedRegex::Op op, Codepoint value = -1,
ParsedRegex::Quantifier quantifier = {ParsedRegex::Quantifier::One})
{
return AstNodePtr{new ParsedRegex::AstNode{op, m_ignore_case, value, quantifier, {}}};
}
bool at_end() const { return m_pos == m_regex.end(); }
[[gnu::noreturn]]
void parse_error(StringView error)
{
throw regex_error(format("regex parse error: {} at '{}<<<HERE>>>{}'", error,
StringView{m_regex.begin(), m_pos.base()},
StringView{m_pos.base(), m_regex.end()}));
}
void validate_lookaround(const AstNodePtr& node)
{
for (auto& child : node->children)
{
if (child->op != ParsedRegex::Literal and child->op != ParsedRegex::Matcher and
child->op != ParsedRegex::AnyChar)
parse_error("Lookaround can only contain literals, any chars or character classes");
if (child->quantifier.type != ParsedRegex::Quantifier::One)
parse_error("Quantifiers cannot be used in lookarounds");
}
}
ParsedRegex m_parsed_regex;
StringView m_regex;
Iterator m_pos;
bool m_ignore_case = false;
static constexpr struct CharacterClassEscape {
Codepoint cp;
const char* ctype;
StringView additional_chars;
bool neg;
} character_class_escapes[] = {
{ 'd', "digit", "", false },
{ 'w', "alnum", "_", false },
{ 's', "space", "", false },
{ 'h', nullptr, " \t", false },
};
static constexpr struct ControlEscape {
Codepoint name;
Codepoint value;
} control_escapes[] = {
{ 'f', '\f' },
{ 'n', '\n' },
{ 'r', '\r' },
{ 't', '\t' },
{ 'v', '\v' }
};
2017-09-17 12:15:43 +02:00
};
constexpr RegexParser::CharacterClassEscape RegexParser::character_class_escapes[];
constexpr RegexParser::ControlEscape RegexParser::control_escapes[];
struct RegexCompiler
{
RegexCompiler(const ParsedRegex& parsed_regex, RegexCompileFlags flags, MatchDirection direction)
: m_parsed_regex{parsed_regex}, m_flags(flags), m_forward{direction == MatchDirection::Forward}
{
compile_node(m_parsed_regex.ast);
push_inst(CompiledRegex::Match);
m_program.matchers = m_parsed_regex.matchers;
m_program.save_count = m_parsed_regex.capture_count * 2;
m_program.direction = direction;
m_program.start_chars = compute_start_chars();
}
CompiledRegex get_compiled_regex() { return std::move(m_program); }
private:
uint32_t compile_node_inner(const ParsedRegex::AstNodePtr& node)
{
const auto start_pos = m_program.instructions.size();
const bool ignore_case = node->ignore_case;
const Codepoint capture = (node->op == ParsedRegex::Alternation or node->op == ParsedRegex::Sequence) ? node->value : -1;
if (capture != -1 and (capture == 0 or not (m_flags & RegexCompileFlags::NoSubs)))
push_inst(CompiledRegex::Save, capture * 2 + (m_forward ? 0 : 1));
2017-09-17 12:15:43 +02:00
Vector<uint32_t> goto_inner_end_offsets;
switch (node->op)
{
case ParsedRegex::Literal:
if (ignore_case)
push_inst(CompiledRegex::Literal_IgnoreCase, to_lower(node->value));
else
push_inst(CompiledRegex::Literal, node->value);
break;
case ParsedRegex::AnyChar:
push_inst(CompiledRegex::AnyChar);
break;
case ParsedRegex::Matcher:
push_inst(CompiledRegex::Matcher, node->value);
break;
case ParsedRegex::Sequence:
{
if (m_forward)
for (auto& child : node->children)
compile_node(child);
else
for (auto& child : node->children | reverse())
compile_node(child);
break;
}
case ParsedRegex::Alternation:
{
auto& children = node->children;
kak_assert(children.size() > 1);
const auto split_pos = m_program.instructions.size();
for (int i = 0; i < children.size() - 1; ++i)
push_inst(CompiledRegex::Split_PrioritizeParent);
for (int i = 0; i < children.size(); ++i)
{
auto node = compile_node(children[i]);
if (i > 0)
m_program.instructions[split_pos + i - 1].param = node;
if (i < children.size() - 1)
{
auto jump = push_inst(CompiledRegex::Jump);
goto_inner_end_offsets.push_back(jump);
}
}
break;
}
case ParsedRegex::LookAhead:
push_inst(m_forward ? (ignore_case ? CompiledRegex::LookAhead_IgnoreCase
: CompiledRegex::LookAhead)
: (ignore_case ? CompiledRegex::LookBehind_IgnoreCase
: CompiledRegex::LookBehind),
push_lookaround(node->children, false, ignore_case));
break;
case ParsedRegex::NegativeLookAhead:
push_inst(m_forward ? (ignore_case ? CompiledRegex::NegativeLookAhead_IgnoreCase
: CompiledRegex::NegativeLookAhead)
: (ignore_case ? CompiledRegex::NegativeLookBehind_IgnoreCase
: CompiledRegex::NegativeLookBehind),
push_lookaround(node->children, false, ignore_case));
break;
case ParsedRegex::LookBehind:
push_inst(m_forward ? (ignore_case ? CompiledRegex::LookBehind_IgnoreCase
: CompiledRegex::LookBehind)
: (ignore_case ? CompiledRegex::LookAhead_IgnoreCase
: CompiledRegex::LookAhead),
push_lookaround(node->children, true, ignore_case));
break;
case ParsedRegex::NegativeLookBehind:
push_inst(m_forward ? (ignore_case ? CompiledRegex::NegativeLookBehind_IgnoreCase
: CompiledRegex::NegativeLookBehind)
: (ignore_case ? CompiledRegex::NegativeLookAhead_IgnoreCase
: CompiledRegex::NegativeLookAhead),
push_lookaround(node->children, true, ignore_case));
break;
case ParsedRegex::LineStart:
push_inst(m_forward ? CompiledRegex::LineStart
: CompiledRegex::LineEnd);
break;
case ParsedRegex::LineEnd:
push_inst(m_forward ? CompiledRegex::LineEnd
: CompiledRegex::LineStart);
break;
case ParsedRegex::WordBoundary:
push_inst(CompiledRegex::WordBoundary);
break;
case ParsedRegex::NotWordBoundary:
push_inst(CompiledRegex::NotWordBoundary);
break;
case ParsedRegex::SubjectBegin:
push_inst(m_forward ? CompiledRegex::SubjectBegin
: CompiledRegex::SubjectEnd);
break;
case ParsedRegex::SubjectEnd:
push_inst(m_forward ? CompiledRegex::SubjectEnd
: CompiledRegex::SubjectBegin);
break;
case ParsedRegex::ResetStart:
push_inst(CompiledRegex::Save, 0);
break;
}
for (auto& offset : goto_inner_end_offsets)
m_program.instructions[offset].param = m_program.instructions.size();
if (capture != -1 and (capture == 0 or not (m_flags & RegexCompileFlags::NoSubs)))
push_inst(CompiledRegex::Save, capture * 2 + (m_forward ? 1 : 0));
return start_pos;
2017-09-19 09:56:21 +02:00
}
uint32_t compile_node(const ParsedRegex::AstNodePtr& node)
{
uint32_t pos = m_program.instructions.size();
Vector<uint32_t> goto_ends;
2017-09-28 11:50:04 +02:00
auto& quantifier = node->quantifier;
// TODO reverse, invert the way we write optional quantifiers ?
2017-09-28 11:50:04 +02:00
if (quantifier.allows_none())
{
auto split_pos = push_inst(quantifier.greedy ? CompiledRegex::Split_PrioritizeParent
: CompiledRegex::Split_PrioritizeChild);
goto_ends.push_back(split_pos);
}
auto inner_pos = compile_node_inner(node);
// Write the node multiple times when we have a min count quantifier
2017-09-28 11:50:04 +02:00
for (int i = 1; i < quantifier.min; ++i)
inner_pos = compile_node_inner(node);
2017-09-28 11:50:04 +02:00
if (quantifier.allows_infinite_repeat())
push_inst(quantifier.greedy ? CompiledRegex::Split_PrioritizeChild
: CompiledRegex::Split_PrioritizeParent,
inner_pos);
// Write the node as an optional match for the min -> max counts
2017-09-28 11:50:04 +02:00
else for (int i = std::max(1, quantifier.min); // STILL UGLY !
i < quantifier.max; ++i)
{
auto split_pos = push_inst(quantifier.greedy ? CompiledRegex::Split_PrioritizeParent
: CompiledRegex::Split_PrioritizeChild);
goto_ends.push_back(split_pos);
compile_node_inner(node);
}
for (auto offset : goto_ends)
m_program.instructions[offset].param = m_program.instructions.size();
return pos;
}
uint32_t push_inst(CompiledRegex::Op op, uint32_t param = 0)
{
uint32_t res = m_program.instructions.size();
m_program.instructions.push_back({ op, false, false, param });
return res;
}
uint32_t push_lookaround(const Vector<ParsedRegex::AstNodePtr>& characters,
bool reversed, bool ignore_case)
{
uint32_t res = m_program.lookarounds.size();
auto write_lookaround = [this, ignore_case](auto&& characters) {
for (auto& character : characters)
{
if (character->op == ParsedRegex::Literal)
m_program.lookarounds.push_back(ignore_case ? to_lower(character->value)
: character->value);
else if (character->op == ParsedRegex::AnyChar)
m_program.lookarounds.push_back(0xF000);
else if (character->op == ParsedRegex::Matcher)
m_program.lookarounds.push_back(0xF0001 + character->value);
else
kak_assert(false);
}
};
if (reversed)
write_lookaround(characters | reverse());
else
write_lookaround(characters);
m_program.lookarounds.push_back((Codepoint)-1);
return res;
}
static constexpr size_t start_chars_count = CompiledRegex::StartChars::count;
// Fills accepted and rejected according to which chars can start the given node,
// returns true if the node did not consume the char, hence a following node in
// sequence would be still relevant for the parent node start chars computation.
bool compute_start_chars(const ParsedRegex::AstNodePtr& node,
bool (&accepted)[start_chars_count],
bool (&rejected)[start_chars_count]) const
{
switch (node->op)
{
case ParsedRegex::Literal:
if (node->value < start_chars_count)
accepted[node->value] = true;
return node->quantifier.allows_none();
case ParsedRegex::AnyChar:
for (auto& b : accepted)
b = true;
return node->quantifier.allows_none();
case ParsedRegex::Matcher:
for (auto& b : accepted) // treat matcher as everything can match for now
b = true;
return node->quantifier.allows_none();
case ParsedRegex::Sequence:
{
bool consumed = false;
auto consumes = [&, this](auto& child) {
return not this->compute_start_chars(child, accepted, rejected);
};
if (m_forward)
consumed = contains_that(node->children, consumes);
else
consumed = contains_that(node->children | reverse(), consumes);
return not consumed or node->quantifier.allows_none();
}
case ParsedRegex::Alternation:
{
bool all_consumed = not node->quantifier.allows_none();
for (auto& child : node->children)
{
if (compute_start_chars(child, accepted, rejected))
all_consumed = false;
}
return not all_consumed;
}
case ParsedRegex::LineStart:
case ParsedRegex::LineEnd:
case ParsedRegex::WordBoundary:
case ParsedRegex::NotWordBoundary:
case ParsedRegex::SubjectBegin:
case ParsedRegex::SubjectEnd:
case ParsedRegex::ResetStart:
return true;
case ParsedRegex::LookAhead:
case ParsedRegex::LookBehind:
if (not node->children.empty() and
m_forward == (node->op == ParsedRegex::LookAhead))
{
auto& child = m_forward ? node->children.front() : node->children.back();
if (child->op == ParsedRegex::Literal and child->value < start_chars_count)
{
// Any other char is rejected
std::fill(rejected, rejected + child->value, true);
std::fill(rejected + child->value + 1, rejected + start_chars_count, true);
}
}
return true;
case ParsedRegex::NegativeLookAhead:
case ParsedRegex::NegativeLookBehind:
if (node->children.size() == 1 and
m_forward == (node->op == ParsedRegex::NegativeLookAhead))
{
auto& child = node->children.front();
if (child->op == ParsedRegex::Literal and child->value < start_chars_count)
rejected[child->value] = true;
}
return true;
}
return false;
}
[[gnu::noinline]]
std::unique_ptr<CompiledRegex::StartChars> compute_start_chars() const
{
bool accepted[start_chars_count] = {};
bool rejected[start_chars_count] = {};
if (compute_start_chars(m_parsed_regex.ast, accepted, rejected))
return nullptr;
if (not contains(accepted, false) and not contains(rejected, true))
return nullptr;
auto start_chars = std::make_unique<CompiledRegex::StartChars>();
for (int i = 0; i < start_chars_count; ++i)
start_chars->map[i] = accepted[i] and not rejected[i];
return start_chars;
}
CompiledRegex m_program;
RegexCompileFlags m_flags;
const ParsedRegex& m_parsed_regex;
const bool m_forward;
};
void dump_regex(const CompiledRegex& program)
{
int count = 0;
for (auto& inst : program.instructions)
{
printf(" %03d ", count++);
switch (inst.op)
{
case CompiledRegex::Literal:
printf("literal %lc\n", inst.param);
break;
case CompiledRegex::Literal_IgnoreCase:
printf("literal (ignore case) %lc\n", inst.param);
break;
case CompiledRegex::AnyChar:
printf("any char\n");
break;
case CompiledRegex::Jump:
printf("jump %u\n", inst.param);
break;
case CompiledRegex::Split_PrioritizeParent:
case CompiledRegex::Split_PrioritizeChild:
{
printf("split (prioritize %s) %u\n",
inst.op == CompiledRegex::Split_PrioritizeParent ? "parent" : "child",
inst.param);
break;
}
case CompiledRegex::Save:
printf("save %d\n", inst.param);
2017-09-19 09:56:21 +02:00
break;
case CompiledRegex::Matcher:
printf("matcher %d\n", inst.param);
break;
case CompiledRegex::LineStart:
printf("line start\n");
break;
case CompiledRegex::LineEnd:
printf("line end\n");
break;
case CompiledRegex::WordBoundary:
printf("word boundary\n");
break;
case CompiledRegex::NotWordBoundary:
printf("not word boundary\n");
break;
case CompiledRegex::SubjectBegin:
printf("subject begin\n");
break;
case CompiledRegex::SubjectEnd:
printf("subject end\n");
break;
case CompiledRegex::LookAhead:
case CompiledRegex::NegativeLookAhead:
case CompiledRegex::LookBehind:
case CompiledRegex::NegativeLookBehind:
case CompiledRegex::LookAhead_IgnoreCase:
case CompiledRegex::NegativeLookAhead_IgnoreCase:
case CompiledRegex::LookBehind_IgnoreCase:
case CompiledRegex::NegativeLookBehind_IgnoreCase:
{
const char* name = nullptr;
if (inst.op == CompiledRegex::LookAhead)
name = "look ahead";
if (inst.op == CompiledRegex::NegativeLookAhead)
name = "negative look ahead";
if (inst.op == CompiledRegex::LookBehind)
name = "look behind";
if (inst.op == CompiledRegex::NegativeLookBehind)
name = "negative look behind";
if (inst.op == CompiledRegex::LookAhead_IgnoreCase)
name = "look ahead (ignore case)";
if (inst.op == CompiledRegex::NegativeLookAhead_IgnoreCase)
name = "negative look ahead (ignore case)";
if (inst.op == CompiledRegex::LookBehind_IgnoreCase)
name = "look behind (ignore case)";
if (inst.op == CompiledRegex::NegativeLookBehind_IgnoreCase)
name = "negative look behind (ignore case)";
String str;
for (auto it = program.lookarounds.begin() + inst.param; *it != -1; ++it)
utf8::dump(std::back_inserter(str), *it);
printf("%s (%s)\n", name, str.c_str());
break;
}
case CompiledRegex::Match:
printf("match\n");
}
}
}
CompiledRegex compile_regex(StringView re, RegexCompileFlags flags, MatchDirection direction)
{
return RegexCompiler{RegexParser::parse(re), flags, direction}.get_compiled_regex();
}
namespace
{
template<MatchDirection dir = MatchDirection::Forward>
struct TestVM : CompiledRegex, ThreadedRegexVM<const char*, dir>
{
using VMType = ThreadedRegexVM<const char*, dir>;
TestVM(StringView re, bool dump = false)
: CompiledRegex{compile_regex(re, RegexCompileFlags::None, dir)},
VMType{(const CompiledRegex&)*this}
{ if (dump) dump_regex(*this); }
bool exec(StringView re, RegexExecFlags flags = RegexExecFlags::AnyMatch)
2017-09-17 12:15:43 +02:00
{
return VMType::exec(re.begin(), re.end(), flags);
}
};
}
auto test_regex = UnitTest{[]{
{
TestVM<> vm{R"(a*b)"};
kak_assert(vm.exec("b"));
kak_assert(vm.exec("ab"));
kak_assert(vm.exec("aaab"));
kak_assert(not vm.exec("acb"));
kak_assert(not vm.exec("abc"));
kak_assert(not vm.exec(""));
2017-09-17 12:15:43 +02:00
}
{
TestVM<> vm{R"(^a.*b$)"};
kak_assert(vm.exec("afoob"));
kak_assert(vm.exec("ab"));
kak_assert(not vm.exec("bab"));
kak_assert(not vm.exec(""));
}
2017-09-17 12:15:43 +02:00
{
TestVM<> vm{R"(^(foo|qux|baz)+(bar)?baz$)"};
kak_assert(vm.exec("fooquxbarbaz"));
kak_assert(StringView{vm.captures()[2], vm.captures()[3]} == "qux");
kak_assert(not vm.exec("fooquxbarbaze"));
kak_assert(not vm.exec("quxbar"));
kak_assert(not vm.exec("blahblah"));
kak_assert(vm.exec("bazbaz"));
kak_assert(vm.exec("quxbaz"));
2017-09-17 12:15:43 +02:00
}
{
TestVM<> vm{R"(.*\b(foo|bar)\b.*)"};
kak_assert(vm.exec("qux foo baz"));
kak_assert(StringView{vm.captures()[2], vm.captures()[3]} == "foo");
kak_assert(not vm.exec("quxfoobaz"));
kak_assert(vm.exec("bar"));
kak_assert(not vm.exec("foobar"));
}
{
TestVM<> vm{R"((foo|bar))"};
kak_assert(vm.exec("foo"));
kak_assert(vm.exec("bar"));
kak_assert(not vm.exec("foobar"));
}
{
TestVM<> vm{R"(a{3,5}b)"};
kak_assert(not vm.exec("aab"));
kak_assert(vm.exec("aaab"));
kak_assert(not vm.exec("aaaaaab"));
kak_assert(vm.exec("aaaaab"));
}
{
TestVM<> vm{R"(a{3}b)"};
kak_assert(not vm.exec("aab"));
kak_assert(vm.exec("aaab"));
kak_assert(not vm.exec("aaaab"));
}
{
TestVM<> vm{R"(a{3,}b)"};
kak_assert(not vm.exec("aab"));
kak_assert(vm.exec("aaab"));
kak_assert(vm.exec("aaaaab"));
}
{
TestVM<> vm{R"(a{,3}b)"};
kak_assert(vm.exec("b"));
kak_assert(vm.exec("ab"));
kak_assert(vm.exec("aaab"));
kak_assert(not vm.exec("aaaab"));
}
{
TestVM<> vm{R"(f.*a(.*o))"};
kak_assert(vm.exec("blahfoobarfoobaz", RegexExecFlags::Search));
kak_assert(StringView{vm.captures()[0], vm.captures()[1]} == "foobarfoo");
kak_assert(StringView{vm.captures()[2], vm.captures()[3]} == "rfoo");
kak_assert(vm.exec("mais que fais la police", RegexExecFlags::Search));
kak_assert(StringView{vm.captures()[0], vm.captures()[1]} == "fais la po");
kak_assert(StringView{vm.captures()[2], vm.captures()[3]} == " po");
}
{
TestVM<> vm{R"([àb-dX-Z-]{3,5})"};
kak_assert(vm.exec("cà-Y"));
kak_assert(not vm.exec("àeY"));
kak_assert(vm.exec("dcbàX"));
kak_assert(not vm.exec("efg"));
}
{
TestVM<> vm{R"((a{3,5})a+)"};
kak_assert(vm.exec("aaaaaa", RegexExecFlags::None));
kak_assert(StringView{vm.captures()[2], vm.captures()[3]} == "aaaaa");
}
{
TestVM<> vm{R"((a{3,5}?)a+)"};
kak_assert(vm.exec("aaaaaa", RegexExecFlags::None));
kak_assert(StringView{vm.captures()[2], vm.captures()[3]} == "aaa");
}
{
TestVM<> vm{R"((a{3,5}?)a)"};
kak_assert(vm.exec("aaaa"));
}
{
TestVM<> vm{R"(\d{3})"};
kak_assert(vm.exec("123"));
kak_assert(not vm.exec("1x3"));
}
{
TestVM<> vm{R"([-\d]+)"};
kak_assert(vm.exec("123-456"));
kak_assert(not vm.exec("123_456"));
}
{
TestVM<> vm{R"([ \H]+)"};
kak_assert(vm.exec("abc "));
kak_assert(not vm.exec("a \t"));
}
{
TestVM<> vm{R"(\Q{}[]*+?\Ea+)"};
kak_assert(vm.exec("{}[]*+?aa"));
}
{
TestVM<> vm{R"(\Q...)"};
kak_assert(vm.exec("..."));
kak_assert(not vm.exec("bla"));
}
{
TestVM<> vm{R"(foo\Kbar)"};
kak_assert(vm.exec("foobar", RegexExecFlags::None));
kak_assert(StringView{vm.captures()[0], vm.captures()[1]} == "bar");
kak_assert(not vm.exec("bar", RegexExecFlags::None));
}
2017-09-28 11:50:04 +02:00
{
TestVM<> vm{R"((fo+?).*)"};
kak_assert(vm.exec("foooo", RegexExecFlags::None));
kak_assert(StringView{vm.captures()[2], vm.captures()[3]} == "fo");
2017-09-28 11:50:04 +02:00
}
{
TestVM<> vm{R"((?=foo).)"};
kak_assert(vm.exec("barfoo", RegexExecFlags::Search));
kak_assert(StringView{vm.captures()[0], vm.captures()[1]} == "f");
}
{
TestVM<> vm{R"((?<!f).)"};
kak_assert(vm.exec("f"));
}
{
TestVM<> vm{R"((?!f[oa]o)...)"};
kak_assert(not vm.exec("foo"));
kak_assert(vm.exec("qux"));
}
{
TestVM<> vm{R"(...(?<=f.o))"};
kak_assert(vm.exec("foo"));
kak_assert(not vm.exec("qux"));
}
{
TestVM<> vm{R"(...(?<!foo))"};
kak_assert(not vm.exec("foo"));
kak_assert(vm.exec("qux"));
}
{
TestVM<> vm{R"(Foo(?i)f[oB]+)"};
kak_assert(vm.exec("FooFOoBb"));
}
{
TestVM<> vm{R"([^\]]+)"};
kak_assert(not vm.exec("a]c"));
kak_assert(vm.exec("abc"));
}
{
TestVM<> vm{R"([^:\n]+)"};
kak_assert(not vm.exec("\nbc"));
kak_assert(vm.exec("abc"));
}
{
TestVM<> vm{R"((?:foo)+)"};
kak_assert(vm.exec("foofoofoo"));
kak_assert(not vm.exec("barbarbar"));
}
{
TestVM<> vm{R"((?<!\\)(?:\\\\)*")"};
kak_assert(vm.exec("foo\"", RegexExecFlags::Search));
}
{
TestVM<> vm{R"($)"};
kak_assert(vm.exec("foo\n", RegexExecFlags::Search));
kak_assert(*vm.captures()[0] == '\n');
}
{
TestVM<MatchDirection::Backward> vm{R"(fo{1,})"};
kak_assert(vm.exec("foo1fooo2", RegexExecFlags::Search));
kak_assert(*vm.captures()[1] == '2');
}
{
TestVM<MatchDirection::Backward> vm{R"((?<=f)oo(b[ae]r)?(?=baz))"};
kak_assert(vm.exec("foobarbazfoobazfooberbaz", RegexExecFlags::Search));
kak_assert(StringView{vm.captures()[0], vm.captures()[1]} == "oober");
kak_assert(StringView{vm.captures()[2], vm.captures()[3]} == "ber");
}
2017-10-07 08:25:14 +02:00
{
TestVM<MatchDirection::Backward> vm{R"((baz|boz|foo|qux)(?<!baz)(?<!o))"};
kak_assert(vm.exec("quxbozfoobaz", RegexExecFlags::Search));
kak_assert(StringView{vm.captures()[0], vm.captures()[1]} == "boz");
}
{
TestVM<MatchDirection::Backward> vm{R"($)"};
kak_assert(vm.exec("foo\nbar\nbaz\nqux", RegexExecFlags::Search | RegexExecFlags::NotEndOfLine));
kak_assert(StringView{vm.captures()[0]} == "\nqux");
}
2017-10-07 08:25:14 +02:00
{
TestVM<> vm{R"(()*)"};
kak_assert(not vm.exec(" "));
}
{
TestVM<> vm{R"(\b(?<!-)(a|b|)(?!-)\b)"};
kak_assert(vm.exec("# foo bar", RegexExecFlags::Search));
kak_assert(*vm.captures()[0] == '#');
}
{
TestVM<> vm{R"((?=))"};
kak_assert(vm.exec(""));
}
{
TestVM<> vm{R"((?i)(?=Foo))"};
kak_assert(vm.exec("fOO", RegexExecFlags::Search));
kak_assert(*vm.captures()[0] == 'f');
}
}};
}