kakoune/src/regex_impl.hh

316 lines
11 KiB
C++
Raw Normal View History

#ifndef regex_impl_hh_INCLUDED
#define regex_impl_hh_INCLUDED
#include "unicode.hh"
#include "utf8.hh"
#include "utf8_iterator.hh"
#include "vector.hh"
namespace Kakoune
{
struct CompiledRegex
{
enum Op : char
{
Match,
Literal,
LiteralIgnoreCase,
AnyChar,
Matcher,
Jump,
Split_PrioritizeParent,
Split_PrioritizeChild,
Save,
LineStart,
LineEnd,
WordBoundary,
NotWordBoundary,
SubjectBegin,
SubjectEnd,
LookAhead,
LookBehind,
NegativeLookAhead,
NegativeLookBehind,
};
using Offset = unsigned;
static constexpr Offset search_prefix_size = 3 + 2 * sizeof(Offset);
explicit operator bool() const { return not bytecode.empty(); }
Vector<char> bytecode;
Vector<std::function<bool (Codepoint)>> matchers;
size_t save_count;
};
CompiledRegex compile_regex(StringView re);
template<typename Iterator>
struct ThreadedRegexVM
{
ThreadedRegexVM(const CompiledRegex& program)
: m_program{program} { kak_assert(m_program); }
struct Thread
{
const char* inst;
Vector<Iterator> saves = {};
};
enum class StepResult { Consumed, Matched, Failed };
StepResult step(size_t thread_index)
{
const auto prog_start = m_program.bytecode.data();
const auto prog_end = prog_start + m_program.bytecode.size();
while (true)
{
auto& thread = m_threads[thread_index];
const Codepoint cp = m_pos == m_end ? 0 : *m_pos;
const CompiledRegex::Op op = (CompiledRegex::Op)*thread.inst++;
switch (op)
{
case CompiledRegex::Literal:
if (utf8::read_codepoint(thread.inst, prog_end) == cp)
return StepResult::Consumed;
return StepResult::Failed;
case CompiledRegex::LiteralIgnoreCase:
if (utf8::read_codepoint(thread.inst, prog_end) == to_lower(cp))
return StepResult::Consumed;
return StepResult::Failed;
case CompiledRegex::AnyChar:
return StepResult::Consumed;
case CompiledRegex::Jump:
{
auto inst = prog_start + *reinterpret_cast<const CompiledRegex::Offset*>(thread.inst);
// if instruction is already going to be executed by another thread, drop this thread
if (std::find_if(m_threads.begin(), m_threads.end(),
[inst](const Thread& t) { return t.inst == inst; }) != m_threads.end())
return StepResult::Failed;
thread.inst = inst;
break;
}
case CompiledRegex::Split_PrioritizeParent:
{
add_thread(thread_index+1, *reinterpret_cast<const CompiledRegex::Offset*>(thread.inst), thread.saves);
// thread is invalidated now, as we mutated the m_thread vector
m_threads[thread_index].inst += sizeof(CompiledRegex::Offset);
break;
}
case CompiledRegex::Split_PrioritizeChild:
{
add_thread(thread_index+1, thread.inst + sizeof(CompiledRegex::Offset) - prog_start, thread.saves);
// thread is invalidated now, as we mutated the m_thread vector
m_threads[thread_index].inst = prog_start + *reinterpret_cast<const CompiledRegex::Offset*>(m_threads[thread_index].inst);
break;
}
case CompiledRegex::Save:
{
const char index = *thread.inst++;
thread.saves[index] = m_pos.base();
break;
}
case CompiledRegex::Matcher:
{
const int matcher_id = *thread.inst++;
return m_program.matchers[matcher_id](*m_pos) ?
StepResult::Consumed : StepResult::Failed;
}
case CompiledRegex::LineStart:
if (not is_line_start())
return StepResult::Failed;
break;
case CompiledRegex::LineEnd:
if (not is_line_end())
return StepResult::Failed;
break;
case CompiledRegex::WordBoundary:
if (not is_word_boundary())
return StepResult::Failed;
break;
case CompiledRegex::NotWordBoundary:
if (is_word_boundary())
return StepResult::Failed;
break;
case CompiledRegex::SubjectBegin:
if (m_pos != m_begin)
return StepResult::Failed;
break;
case CompiledRegex::SubjectEnd:
if (m_pos != m_end)
return StepResult::Failed;
break;
case CompiledRegex::LookAhead:
case CompiledRegex::NegativeLookAhead:
{
int count = *thread.inst++;
for (auto it = m_pos; count and it != m_end; ++it, --count)
if (*it != utf8::read(thread.inst))
break;
if ((op == CompiledRegex::LookAhead and count != 0) or
(op == CompiledRegex::NegativeLookAhead and count == 0))
return StepResult::Failed;
thread.inst = utf8::advance(thread.inst, prog_end, CharCount{count - 1});
break;
}
case CompiledRegex::LookBehind:
case CompiledRegex::NegativeLookBehind:
{
int count = *thread.inst++;
for (auto it = m_pos-1; count and it >= m_begin; --it, --count)
if (*it != utf8::read(thread.inst))
break;
if ((op == CompiledRegex::LookBehind and count != 0) or
(op == CompiledRegex::NegativeLookBehind and count == 0))
return StepResult::Failed;
thread.inst = utf8::advance(thread.inst, prog_end, CharCount{count - 1});
break;
}
case CompiledRegex::Match:
return StepResult::Matched;
}
}
return StepResult::Failed;
}
bool exec(Iterator begin, Iterator end, bool match = true, bool longest = false)
{
bool found_match = false;
m_threads.clear();
add_thread(0, match ? CompiledRegex::search_prefix_size : 0,
Vector<Iterator>(m_program.save_count, Iterator{}));
m_begin = begin;
m_end = end;
for (m_pos = Utf8It{m_begin, m_begin, m_end}; m_pos != m_end; ++m_pos)
{
for (int i = 0; i < m_threads.size(); )
{
const auto res = step(i);
if (res == StepResult::Matched)
{
if (match)
{
m_threads.erase(m_threads.begin() + i);
continue; // We are not at end, this is not a full match
}
m_captures = std::move(m_threads[i].saves);
found_match = true;
m_threads.resize(i); // remove this and lower priority threads
if (not longest)
return true;
}
else if (res == StepResult::Failed)
m_threads.erase(m_threads.begin() + i);
else
{
auto it = m_threads.begin() + i;
if (std::find_if(m_threads.begin(), it, [inst = it->inst](auto& t)
{ return t.inst == inst; }) != it)
m_threads.erase(it);
else
++i;
}
}
// we should never have more than one thread on the same instruction
kak_assert(m_threads.size() <= m_program.bytecode.size());
if (m_threads.empty())
return found_match;
}
// Step remaining threads to see if they match without consuming anything else
for (int i = 0; i < m_threads.size(); ++i)
{
if (step(i) == StepResult::Matched)
{
m_captures = std::move(m_threads[i].saves);
found_match = true;
m_threads.resize(i); // remove this and lower priority threads
if (not longest)
return true;
}
}
return found_match;
}
void add_thread(int index, CompiledRegex::Offset pos, Vector<Iterator> saves)
{
const char* inst = m_program.bytecode.data() + pos;
if (std::find_if(m_threads.begin(), m_threads.end(),
[inst](const Thread& t) { return t.inst == inst; }) == m_threads.end())
m_threads.insert(m_threads.begin() + index, {inst, std::move(saves)});
kak_assert(m_threads.size() < m_program.bytecode.size());
}
bool is_line_start() const
{
return m_pos == m_begin or *(m_pos-1) == '\n';
}
bool is_line_end() const
{
return m_pos == m_end or *m_pos == '\n';
}
bool is_word_boundary() const
{
return m_pos == m_begin or m_pos == m_end or
is_word(*(m_pos-1)) != is_word(*m_pos);
}
const CompiledRegex& m_program;
Vector<Thread> m_threads;
using Utf8It = utf8::iterator<Iterator>;
Iterator m_begin;
Iterator m_end;
Utf8It m_pos;
Vector<Iterator> m_captures;
};
template<typename It>
bool regex_match(It begin, It end, const CompiledRegex& re)
{
ThreadedRegexVM<It> vm{re};
return vm.exec(begin, end, true, false);
}
template<typename It>
bool regex_match(It begin, It end, Vector<It>& captures, const CompiledRegex& re)
{
ThreadedRegexVM<It> vm{re};
if (vm.exec(begin, end, true, true))
{
captures = std::move(vm.m_captures);
return true;
}
return false;
}
template<typename It>
bool regex_search(It begin, It end, const CompiledRegex& re)
{
ThreadedRegexVM<It> vm{re};
return vm.exec(begin, end, false, false);
}
template<typename It>
bool regex_search(It begin, It end, Vector<It>& captures, const CompiledRegex& re)
{
ThreadedRegexVM<It> vm{re};
if (vm.exec(begin, end, false, true))
{
captures = std::move(vm.m_captures);
return true;
}
return false;
}
}
#endif // regex_impl_hh_INCLUDED