home/src/regex_impl.cc
2017-11-01 14:05:15 +08:00

1404 lines
47 KiB
C++

#include "regex_impl.hh"
#include "exception.hh"
#include "string.hh"
#include "unicode.hh"
#include "unit_tests.hh"
#include "utf8.hh"
#include "utf8_iterator.hh"
#include "string_utils.hh"
#include "vector.hh"
#include <cstring>
namespace Kakoune
{
constexpr Codepoint CompiledRegex::StartChars::other;
struct ParsedRegex
{
enum Op : char
{
Literal,
AnyChar,
Matcher,
Sequence,
Alternation,
LineStart,
LineEnd,
WordBoundary,
NotWordBoundary,
SubjectBegin,
SubjectEnd,
ResetStart,
LookAhead,
NegativeLookAhead,
LookBehind,
NegativeLookBehind,
};
struct Quantifier
{
enum Type : char
{
One,
Optional,
RepeatZeroOrMore,
RepeatOneOrMore,
RepeatMinMax,
};
Type type = One;
bool greedy = true;
int16_t min = -1, max = -1;
bool allows_none() const
{
return type == Quantifier::Optional or
type == Quantifier::RepeatZeroOrMore or
(type == Quantifier::RepeatMinMax and min <= 0);
}
bool allows_infinite_repeat() const
{
return type == Quantifier::RepeatZeroOrMore or
type == Quantifier::RepeatOneOrMore or
(type == Quantifier::RepeatMinMax and max < 0);
};
};
struct Node;
using NodeIndex = uint16_t;
struct Node
{
Op op;
bool ignore_case;
NodeIndex children_end;
Codepoint value;
Quantifier quantifier;
};
Vector<Node, MemoryDomain::Regex> nodes;
Vector<std::function<bool (Codepoint)>, MemoryDomain::Regex> matchers;
size_t capture_count;
};
namespace
{
template<typename Func>
bool for_each_child(const ParsedRegex& parsed_regex, ParsedRegex::NodeIndex index, Func&& func)
{
const auto end = parsed_regex.nodes[index].children_end;
for (auto child = index+1; child != end;
child = parsed_regex.nodes[child].children_end)
{
if (func(child) == false)
return false;
}
return true;
}
template<typename Func>
bool for_each_child_reverse(const ParsedRegex& parsed_regex, ParsedRegex::NodeIndex index, Func&& func)
{
auto find_last_child = [&](ParsedRegex::NodeIndex begin, ParsedRegex::NodeIndex end) {
while (parsed_regex.nodes[begin].children_end != end)
begin = parsed_regex.nodes[begin].children_end;
return begin;
};
const auto first_child = index+1;
auto end = parsed_regex.nodes[index].children_end;
while (end != first_child)
{
auto child = find_last_child(first_child, end);
if (func(child) == false)
return false;
end = child;
}
return true;
}
}
// Recursive descent parser based on naming used in the ECMAScript
// standard, although the syntax is not fully compatible.
struct RegexParser
{
RegexParser(StringView re)
: m_regex{re}, m_pos{re.begin(), re}
{
m_parsed_regex.capture_count = 1;
NodeIndex root = disjunction(0);
kak_assert(root == 0);
}
ParsedRegex get_parsed_regex() { return std::move(m_parsed_regex); }
static ParsedRegex parse(StringView re) { return RegexParser{re}.get_parsed_regex(); }
private:
struct InvalidPolicy
{
Codepoint operator()(Codepoint cp) { throw regex_error{"Invalid utf8 in regex"}; }
};
using Iterator = utf8::iterator<const char*, Codepoint, int, InvalidPolicy>;
using NodeIndex = ParsedRegex::NodeIndex;
NodeIndex disjunction(unsigned capture = -1)
{
NodeIndex index = new_node(ParsedRegex::Alternation);
get_node(index).value = capture;
while (true)
{
alternative();
if (at_end() or *m_pos != '|')
break;
++m_pos;
}
get_node(index).children_end = m_parsed_regex.nodes.size();
return index;
}
NodeIndex alternative(ParsedRegex::Op op = ParsedRegex::Sequence)
{
NodeIndex index = new_node(op);
while (auto t = term())
{}
get_node(index).children_end = m_parsed_regex.nodes.size();
return index;
}
Optional<NodeIndex> term()
{
while (modifiers()) // read all modifiers
{}
if (auto node = assertion())
return node;
if (auto node = atom())
{
get_node(*node).quantifier = quantifier();
return node;
}
return {};
}
bool accept(StringView expected)
{
auto it = m_pos;
for (Iterator expected_it{expected.begin(), expected}; expected_it != expected.end(); ++expected_it)
{
if (it == m_regex.end() or *it++ != *expected_it)
return false;
}
m_pos = it;
return true;
}
bool modifiers()
{
if (accept("(?i)"))
{
m_ignore_case = true;
return true;
}
if (accept("(?I)"))
{
m_ignore_case = false;
return true;
}
return false;
}
Optional<NodeIndex> assertion()
{
if (at_end())
return {};
switch (*m_pos)
{
case '^': ++m_pos; return new_node(ParsedRegex::LineStart);
case '$': ++m_pos; return new_node(ParsedRegex::LineEnd);
case '\\':
if (m_pos+1 == m_regex.end())
return {};
switch (*(m_pos+1))
{
case 'b': m_pos += 2; return new_node(ParsedRegex::WordBoundary);
case 'B': m_pos += 2; return new_node(ParsedRegex::NotWordBoundary);
case 'A': m_pos += 2; return new_node(ParsedRegex::SubjectBegin);
case 'z': m_pos += 2; return new_node(ParsedRegex::SubjectEnd);
case 'K': m_pos += 2; return new_node(ParsedRegex::ResetStart);
}
break;
case '(':
{
Optional<ParsedRegex::Op> lookaround_op;
constexpr struct { StringView prefix; ParsedRegex::Op op; } lookarounds[] = {
{ "(?=", ParsedRegex::LookAhead },
{ "(?!", ParsedRegex::NegativeLookAhead },
{ "(?<=", ParsedRegex::LookBehind },
{ "(?<!", ParsedRegex::NegativeLookBehind }
};
for (auto& lookaround : lookarounds)
{
if (accept(lookaround.prefix))
{
lookaround_op = lookaround.op;
break;
}
}
if (not lookaround_op)
return {};
NodeIndex lookaround = alternative(*lookaround_op);
if (at_end() or *m_pos++ != ')')
parse_error("unclosed parenthesis");
validate_lookaround(lookaround);
return lookaround;
}
}
return {};
}
Optional<NodeIndex> atom()
{
if (at_end())
return {};
const Codepoint cp = *m_pos;
switch (cp)
{
case '.': ++m_pos; return new_node(ParsedRegex::AnyChar);
case '(':
{
++m_pos;
const bool capture = not accept("?:");
NodeIndex content = disjunction(capture ? m_parsed_regex.capture_count++ : -1);
if (at_end() or *m_pos++ != ')')
parse_error("unclosed parenthesis");
return content;
}
case '\\':
++m_pos;
return atom_escape();
case '[':
++m_pos;
return character_class();
case '|': case ')':
return {};
default:
if (contains("^$.*+?[]{}", cp))
parse_error(format("unexpected '{}'", cp));
++m_pos;
return new_node(ParsedRegex::Literal, cp);
}
}
NodeIndex atom_escape()
{
const Codepoint cp = *m_pos++;
if (cp == 'Q')
{
auto escaped_sequence = new_node(ParsedRegex::Sequence);
constexpr StringView end_mark{"\\E"};
auto quote_end = std::search(m_pos.base(), m_regex.end(), end_mark.begin(), end_mark.end());
while (m_pos != quote_end)
new_node(ParsedRegex::Literal, *m_pos++);
get_node(escaped_sequence).children_end = m_parsed_regex.nodes.size();
if (quote_end != m_regex.end())
m_pos += 2;
return escaped_sequence;
}
// CharacterClassEscape
auto class_it = find_if(character_class_escapes,
[cp = to_lower(cp)](auto& c) { return c.cp == cp; });
if (class_it != std::end(character_class_escapes))
{
auto matcher_id = m_parsed_regex.matchers.size();
m_parsed_regex.matchers.push_back(
[ctype = class_it->ctype ? wctype(class_it->ctype) : (wctype_t)0,
chars = class_it->additional_chars, neg = is_upper(cp)] (Codepoint cp) {
return ((ctype != 0 and iswctype(cp, ctype)) or contains(chars, cp)) != neg;
});
return new_node(ParsedRegex::Matcher, matcher_id);
}
// CharacterEscape
for (auto& control : control_escapes)
{
if (control.name == cp)
return new_node(ParsedRegex::Literal, control.value);
}
auto read_hex = [this](size_t count)
{
Codepoint res = 0;
for (int i = 0; i < count; ++i)
{
if (at_end())
parse_error("unterminated hex sequence");
Codepoint digit = *m_pos++;
Codepoint digit_value;
if ('0' <= digit and digit <= '9')
digit_value = digit - '0';
else if ('a' <= digit and digit <= 'f')
digit_value = 0xa + digit - 'a';
else if ('A' <= digit and digit <= 'F')
digit_value = 0xa + digit - 'A';
else
parse_error(format("invalid hex digit '{}'", digit));
res = res * 16 + digit_value;
}
return res;
};
if (cp == '0')
return new_node(ParsedRegex::Literal, '\0');
else if (cp == 'c')
{
if (at_end())
parse_error("unterminated control escape");
Codepoint ctrl = *m_pos++;
if (('a' <= ctrl and ctrl <= 'z') or ('A' <= ctrl and ctrl <= 'Z'))
return new_node(ParsedRegex::Literal, ctrl % 32);
parse_error(format("Invalid control escape character '{}'", ctrl));
}
else if (cp == 'x')
return new_node(ParsedRegex::Literal, read_hex(2));
else if (cp == 'u')
return new_node(ParsedRegex::Literal, read_hex(4));
if (contains("^$\\.*+?()[]{}|", cp)) // SyntaxCharacter
return new_node(ParsedRegex::Literal, cp);
parse_error(format("unknown atom escape '{}'", cp));
}
struct CharRange { Codepoint min, max; };
void normalize_ranges(Vector<CharRange, MemoryDomain::Regex>& ranges)
{
if (ranges.empty())
return;
// Sort ranges so that we can use binary search
std::sort(ranges.begin(), ranges.end(),
[](auto& lhs, auto& rhs) { return lhs.min < rhs.min; });
// merge overlapping ranges
auto pos = ranges.begin();
for (auto next = pos+1; next != ranges.end(); ++next)
{
if (pos->max + 1 >= next->min)
{
if (next->max > pos->max)
pos->max = next->max;
}
else
*++pos = *next;
}
ranges.erase(pos+1, ranges.end());
}
NodeIndex character_class()
{
const bool negative = m_pos != m_regex.end() and *m_pos == '^';
if (negative)
++m_pos;
Vector<CharRange, MemoryDomain::Regex> ranges;
Vector<Codepoint, MemoryDomain::Regex> excluded;
Vector<std::pair<wctype_t, bool>, MemoryDomain::Regex> ctypes;
while (m_pos != m_regex.end() and *m_pos != ']')
{
auto cp = *m_pos++;
if (cp == '-')
{
ranges.push_back({ '-', '-' });
continue;
}
if (at_end())
break;
if (cp == '\\')
{
auto it = find_if(character_class_escapes,
[cp = to_lower(*m_pos)](auto& t) { return t.cp == cp; });
if (it != std::end(character_class_escapes))
{
auto negative = is_upper(*m_pos);
if (it->ctype)
ctypes.push_back({wctype(it->ctype), not negative});
for (auto& c : it->additional_chars)
{
if (negative)
excluded.push_back((Codepoint)c);
else
ranges.push_back({(Codepoint)c, (Codepoint)c});
}
++m_pos;
continue;
}
else // its just an escaped character
{
cp = *m_pos++;
for (auto& control : control_escapes)
{
if (control.name == cp)
{
cp = control.value;
break;
}
}
}
}
CharRange range = { cp, cp };
if (*m_pos == '-')
{
if (++m_pos == m_regex.end())
break;
if (*m_pos != ']')
{
range.max = *m_pos++;
if (range.min > range.max)
parse_error("invalid range specified");
}
else
{
ranges.push_back(range);
range = { '-', '-' };
}
}
ranges.push_back(range);
}
if (at_end())
parse_error("unclosed character class");
++m_pos;
if (m_ignore_case)
{
for (auto& range : ranges)
{
range.min = to_lower(range.max);
range.max = to_lower(range.max);
}
for (auto& cp : excluded)
cp = to_lower(cp);
}
normalize_ranges(ranges);
// Optimize the relatively common case of using a character class to
// escape a character, such as [*]
if (ctypes.empty() and excluded.empty() and not negative and
ranges.size() == 1 and ranges.front().min == ranges.front().max)
return new_node(ParsedRegex::Literal, ranges.front().min);
auto matcher = [ranges = std::move(ranges),
ctypes = std::move(ctypes),
excluded = std::move(excluded),
negative, ignore_case = m_ignore_case] (Codepoint cp) {
if (ignore_case)
cp = to_lower(cp);
auto it = std::lower_bound(ranges.begin(), ranges.end(), cp,
[](auto& range, Codepoint cp)
{ return range.max < cp; });
auto found = (it != ranges.end() and it->min <= cp) or
contains_that(ctypes, [cp](auto& c) {
return (bool)iswctype(cp, c.first) == c.second;
}) or (not excluded.empty() and not contains(excluded, cp));
return negative ? not found : found;
};
auto matcher_id = m_parsed_regex.matchers.size();
m_parsed_regex.matchers.push_back(std::move(matcher));
return new_node(ParsedRegex::Matcher, matcher_id);
}
ParsedRegex::Quantifier quantifier()
{
if (at_end())
return {ParsedRegex::Quantifier::One};
constexpr int max_repeat = 1000;
auto read_bound = [max_repeat, this](auto& pos, auto begin, auto end) {
int16_t res = 0;
for (; pos != end; ++pos)
{
const auto cp = *pos;
if (cp < '0' or cp > '9')
return pos == begin ? (int16_t)-1 : res;
res = res * 10 + cp - '0';
if (res > max_repeat)
parse_error(format("Explicit quantifier is too big, maximum is {}", max_repeat));
}
return res;
};
auto check_greedy = [&]() {
if (at_end() or *m_pos != '?')
return true;
++m_pos;
return false;
};
switch (*m_pos)
{
case '*': ++m_pos; return {ParsedRegex::Quantifier::RepeatZeroOrMore, check_greedy()};
case '+': ++m_pos; return {ParsedRegex::Quantifier::RepeatOneOrMore, check_greedy()};
case '?': ++m_pos; return {ParsedRegex::Quantifier::Optional, check_greedy()};
case '{':
{
auto it = m_pos+1;
const int16_t min = read_bound(it, it, m_regex.end());
int16_t max = min;
if (*it == ',')
{
++it;
max = read_bound(it, it, m_regex.end());
}
if (*it++ != '}')
parse_error("expected closing bracket");
m_pos = it;
return {ParsedRegex::Quantifier::RepeatMinMax, check_greedy(), min, max};
}
default: return {ParsedRegex::Quantifier::One};
}
}
NodeIndex new_node(ParsedRegex::Op op, Codepoint value = -1,
ParsedRegex::Quantifier quantifier = {ParsedRegex::Quantifier::One})
{
constexpr auto max_nodes = std::numeric_limits<uint16_t>::max();
const NodeIndex res = m_parsed_regex.nodes.size();
if (res == max_nodes)
parse_error(format("regex parsed to more than {} ast nodes", max_nodes));
const NodeIndex next = res+1;
m_parsed_regex.nodes.push_back({op, m_ignore_case, next, value, quantifier});
return res;
}
bool at_end() const { return m_pos == m_regex.end(); }
ParsedRegex::Node& get_node(NodeIndex index)
{
return m_parsed_regex.nodes[index];
}
[[gnu::noreturn]]
void parse_error(StringView error) const
{
throw regex_error(format("regex parse error: {} at '{}<<<HERE>>>{}'", error,
StringView{m_regex.begin(), m_pos.base()},
StringView{m_pos.base(), m_regex.end()}));
}
void validate_lookaround(NodeIndex index)
{
for_each_child(m_parsed_regex, index, [this](NodeIndex child_index) {
auto& child = get_node(child_index);
if (child.op != ParsedRegex::Literal and child.op != ParsedRegex::Matcher and
child.op != ParsedRegex::AnyChar)
parse_error("Lookaround can only contain literals, any chars or character classes");
if (child.quantifier.type != ParsedRegex::Quantifier::One)
parse_error("Quantifiers cannot be used in lookarounds");
return true;
});
}
ParsedRegex m_parsed_regex;
StringView m_regex;
Iterator m_pos;
bool m_ignore_case = false;
static constexpr struct CharacterClassEscape {
Codepoint cp;
const char* ctype;
StringView additional_chars;
bool neg;
} character_class_escapes[] = {
{ 'd', "digit", "", false },
{ 'w', "alnum", "_", false },
{ 's', "space", "", false },
{ 'h', nullptr, " \t", false },
};
static constexpr struct ControlEscape {
Codepoint name;
Codepoint value;
} control_escapes[] = {
{ 'f', '\f' },
{ 'n', '\n' },
{ 'r', '\r' },
{ 't', '\t' },
{ 'v', '\v' }
};
};
constexpr RegexParser::CharacterClassEscape RegexParser::character_class_escapes[];
constexpr RegexParser::ControlEscape RegexParser::control_escapes[];
struct RegexCompiler
{
RegexCompiler(const ParsedRegex& parsed_regex, RegexCompileFlags flags, MatchDirection direction)
: m_parsed_regex{parsed_regex}, m_flags(flags), m_forward{direction == MatchDirection::Forward}
{
write_search_prefix();
compile_node(0);
push_inst(CompiledRegex::Match);
m_program.matchers = m_parsed_regex.matchers;
m_program.save_count = m_parsed_regex.capture_count * 2;
m_program.direction = direction;
m_program.start_chars = compute_start_chars();
}
CompiledRegex get_compiled_regex() { return std::move(m_program); }
private:
uint32_t compile_node_inner(ParsedRegex::NodeIndex index)
{
auto& node = get_node(index);
const uint32_t start_pos = (uint32_t)m_program.instructions.size();
const bool ignore_case = node.ignore_case;
const bool save = (node.op == ParsedRegex::Alternation or node.op == ParsedRegex::Sequence) and
(node.value == 0 or (node.value != -1 and not (m_flags & RegexCompileFlags::NoSubs)));
if (save)
push_inst(CompiledRegex::Save, node.value * 2 + (m_forward ? 0 : 1));
Vector<uint32_t> goto_inner_end_offsets;
switch (node.op)
{
case ParsedRegex::Literal:
if (ignore_case)
push_inst(CompiledRegex::Literal_IgnoreCase, to_lower(node.value));
else
push_inst(CompiledRegex::Literal, node.value);
break;
case ParsedRegex::AnyChar:
push_inst(CompiledRegex::AnyChar);
break;
case ParsedRegex::Matcher:
push_inst(CompiledRegex::Matcher, node.value);
break;
case ParsedRegex::Sequence:
{
if (m_forward)
for_each_child(m_parsed_regex, index, [this](ParsedRegex::NodeIndex child) {
compile_node(child); return true;
});
else
for_each_child_reverse(m_parsed_regex, index, [this](ParsedRegex::NodeIndex child) {
compile_node(child); return true;
});
break;
}
case ParsedRegex::Alternation:
{
auto split_pos = m_program.instructions.size();
for_each_child(m_parsed_regex, index, [this, index](ParsedRegex::NodeIndex child) {
if (child != index+1)
push_inst(CompiledRegex::Split_PrioritizeParent);
return true;
});
for_each_child(m_parsed_regex, index,
[&, end = node.children_end](ParsedRegex::NodeIndex child) {
auto node = compile_node(child);
if (child != index+1)
m_program.instructions[split_pos++].param = node;
if (get_node(child).children_end != end)
{
auto jump = push_inst(CompiledRegex::Jump);
goto_inner_end_offsets.push_back(jump);
}
return true;
});
break;
}
case ParsedRegex::LookAhead:
push_inst(m_forward ? (ignore_case ? CompiledRegex::LookAhead_IgnoreCase
: CompiledRegex::LookAhead)
: (ignore_case ? CompiledRegex::LookBehind_IgnoreCase
: CompiledRegex::LookBehind),
push_lookaround(index, false, ignore_case));
break;
case ParsedRegex::NegativeLookAhead:
push_inst(m_forward ? (ignore_case ? CompiledRegex::NegativeLookAhead_IgnoreCase
: CompiledRegex::NegativeLookAhead)
: (ignore_case ? CompiledRegex::NegativeLookBehind_IgnoreCase
: CompiledRegex::NegativeLookBehind),
push_lookaround(index, false, ignore_case));
break;
case ParsedRegex::LookBehind:
push_inst(m_forward ? (ignore_case ? CompiledRegex::LookBehind_IgnoreCase
: CompiledRegex::LookBehind)
: (ignore_case ? CompiledRegex::LookAhead_IgnoreCase
: CompiledRegex::LookAhead),
push_lookaround(index, true, ignore_case));
break;
case ParsedRegex::NegativeLookBehind:
push_inst(m_forward ? (ignore_case ? CompiledRegex::NegativeLookBehind_IgnoreCase
: CompiledRegex::NegativeLookBehind)
: (ignore_case ? CompiledRegex::NegativeLookAhead_IgnoreCase
: CompiledRegex::NegativeLookAhead),
push_lookaround(index, true, ignore_case));
break;
case ParsedRegex::LineStart:
push_inst(m_forward ? CompiledRegex::LineStart
: CompiledRegex::LineEnd);
break;
case ParsedRegex::LineEnd:
push_inst(m_forward ? CompiledRegex::LineEnd
: CompiledRegex::LineStart);
break;
case ParsedRegex::WordBoundary:
push_inst(CompiledRegex::WordBoundary);
break;
case ParsedRegex::NotWordBoundary:
push_inst(CompiledRegex::NotWordBoundary);
break;
case ParsedRegex::SubjectBegin:
push_inst(m_forward ? CompiledRegex::SubjectBegin
: CompiledRegex::SubjectEnd);
break;
case ParsedRegex::SubjectEnd:
push_inst(m_forward ? CompiledRegex::SubjectEnd
: CompiledRegex::SubjectBegin);
break;
case ParsedRegex::ResetStart:
push_inst(CompiledRegex::Save, 0);
break;
}
for (auto& offset : goto_inner_end_offsets)
m_program.instructions[offset].param = m_program.instructions.size();
if (save)
push_inst(CompiledRegex::Save, node.value * 2 + (m_forward ? 1 : 0));
return start_pos;
}
uint32_t compile_node(ParsedRegex::NodeIndex index)
{
auto& node = get_node(index);
const uint32_t start_pos = (uint32_t)m_program.instructions.size();
Vector<uint32_t> goto_ends;
auto& quantifier = node.quantifier;
// TODO reverse, invert the way we write optional quantifiers ?
if (quantifier.allows_none())
{
auto split_pos = push_inst(quantifier.greedy ? CompiledRegex::Split_PrioritizeParent
: CompiledRegex::Split_PrioritizeChild);
goto_ends.push_back(split_pos);
}
auto inner_pos = compile_node_inner(index);
// Write the node multiple times when we have a min count quantifier
for (int i = 1; i < quantifier.min; ++i)
inner_pos = compile_node_inner(index);
if (quantifier.allows_infinite_repeat())
push_inst(quantifier.greedy ? CompiledRegex::Split_PrioritizeChild
: CompiledRegex::Split_PrioritizeParent,
inner_pos);
// Write the node as an optional match for the min -> max counts
else for (int i = std::max((int16_t)1, quantifier.min); // STILL UGLY !
i < quantifier.max; ++i)
{
auto split_pos = push_inst(quantifier.greedy ? CompiledRegex::Split_PrioritizeParent
: CompiledRegex::Split_PrioritizeChild);
goto_ends.push_back(split_pos);
compile_node_inner(index);
}
for (auto offset : goto_ends)
m_program.instructions[offset].param = m_program.instructions.size();
return start_pos;
}
// Add an set of instruction prefix used in the search use case
void write_search_prefix()
{
kak_assert(m_program.instructions.empty());
push_inst(CompiledRegex::Split_PrioritizeChild, CompiledRegex::search_prefix_size);
push_inst(CompiledRegex::FindNextStart);
push_inst(CompiledRegex::Split_PrioritizeParent, 1);
kak_assert(m_program.instructions.size() == CompiledRegex::search_prefix_size);
}
uint32_t push_inst(CompiledRegex::Op op, uint32_t param = 0)
{
constexpr auto max_instructions = std::numeric_limits<uint16_t>::max();
uint32_t res = m_program.instructions.size();
if (res > max_instructions)
throw regex_error(format("regex compiled to more than {} instructions", max_instructions));
m_program.instructions.push_back({ op, false, 0, param });
return res;
}
uint32_t push_lookaround(ParsedRegex::NodeIndex index, bool reversed, bool ignore_case)
{
uint32_t res = m_program.lookarounds.size();
auto write_matcher = [this, ignore_case](ParsedRegex::NodeIndex child) {
auto& character = get_node(child);
if (character.op == ParsedRegex::Literal)
m_program.lookarounds.push_back(ignore_case ? to_lower(character.value)
: character.value);
else if (character.op == ParsedRegex::AnyChar)
m_program.lookarounds.push_back(0xF000);
else if (character.op == ParsedRegex::Matcher)
m_program.lookarounds.push_back(0xF0001 + character.value);
else
kak_assert(false);
return true;
};
if (reversed)
for_each_child_reverse(m_parsed_regex, index, write_matcher);
else
for_each_child(m_parsed_regex, index, write_matcher);
m_program.lookarounds.push_back((Codepoint)-1);
return res;
}
// Fills accepted and rejected according to which chars can start the given node,
// returns true if the node did not consume the char, hence a following node in
// sequence would be still relevant for the parent node start chars computation.
bool compute_start_chars(ParsedRegex::NodeIndex index,
CompiledRegex::StartChars& start_chars) const
{
auto& node = get_node(index);
switch (node.op)
{
case ParsedRegex::Literal:
if (node.value < CompiledRegex::StartChars::count)
{
if (node.ignore_case)
{
start_chars.map[to_lower(node.value)] = true;
start_chars.map[to_upper(node.value)] = true;
}
else
start_chars.map[node.value] = true;
}
else
start_chars.map[CompiledRegex::StartChars::other] = true;
return node.quantifier.allows_none();
case ParsedRegex::AnyChar:
for (auto& b : start_chars.map)
b = true;
start_chars.map[CompiledRegex::StartChars::other] = true;
return node.quantifier.allows_none();
case ParsedRegex::Matcher:
for (Codepoint c = 0; c < CompiledRegex::StartChars::count; ++c)
if (m_program.matchers[node.value](c))
start_chars.map[c] = true;
start_chars.map[CompiledRegex::StartChars::other] = true; // stay safe
return node.quantifier.allows_none();
case ParsedRegex::Sequence:
{
bool did_not_consume = false;
auto does_not_consume = [&, this](auto child) {
return this->compute_start_chars(child, start_chars);
};
if (m_forward)
did_not_consume = for_each_child(m_parsed_regex, index, does_not_consume);
else
did_not_consume = for_each_child_reverse(m_parsed_regex, index, does_not_consume);
return did_not_consume or node.quantifier.allows_none();
}
case ParsedRegex::Alternation:
{
bool all_consumed = not node.quantifier.allows_none();
for_each_child(m_parsed_regex, index, [&](ParsedRegex::NodeIndex child) {
if (compute_start_chars(child, start_chars))
all_consumed = false;
return true;
});
return not all_consumed;
}
case ParsedRegex::LineStart:
case ParsedRegex::LineEnd:
case ParsedRegex::WordBoundary:
case ParsedRegex::NotWordBoundary:
case ParsedRegex::SubjectBegin:
case ParsedRegex::SubjectEnd:
case ParsedRegex::ResetStart:
case ParsedRegex::LookAhead:
case ParsedRegex::LookBehind:
case ParsedRegex::NegativeLookAhead:
case ParsedRegex::NegativeLookBehind:
return true;
}
return false;
}
[[gnu::noinline]]
std::unique_ptr<CompiledRegex::StartChars> compute_start_chars() const
{
CompiledRegex::StartChars start_chars{};
if (compute_start_chars(0, start_chars))
return nullptr;
if (not contains(start_chars.map, false))
return nullptr;
return std::make_unique<CompiledRegex::StartChars>(start_chars);
}
const ParsedRegex::Node& get_node(ParsedRegex::NodeIndex index) const
{
return m_parsed_regex.nodes[index];
}
CompiledRegex m_program;
RegexCompileFlags m_flags;
const ParsedRegex& m_parsed_regex;
const bool m_forward;
};
void dump_regex(const CompiledRegex& program)
{
int count = 0;
for (auto& inst : program.instructions)
{
printf(" %03d ", count++);
switch (inst.op)
{
case CompiledRegex::Literal:
printf("literal %lc\n", inst.param);
break;
case CompiledRegex::Literal_IgnoreCase:
printf("literal (ignore case) %lc\n", inst.param);
break;
case CompiledRegex::AnyChar:
printf("any char\n");
break;
case CompiledRegex::Jump:
printf("jump %u\n", inst.param);
break;
case CompiledRegex::Split_PrioritizeParent:
case CompiledRegex::Split_PrioritizeChild:
{
printf("split (prioritize %s) %u\n",
inst.op == CompiledRegex::Split_PrioritizeParent ? "parent" : "child",
inst.param);
break;
}
case CompiledRegex::Save:
printf("save %d\n", inst.param);
break;
case CompiledRegex::Matcher:
printf("matcher %d\n", inst.param);
break;
case CompiledRegex::LineStart:
printf("line start\n");
break;
case CompiledRegex::LineEnd:
printf("line end\n");
break;
case CompiledRegex::WordBoundary:
printf("word boundary\n");
break;
case CompiledRegex::NotWordBoundary:
printf("not word boundary\n");
break;
case CompiledRegex::SubjectBegin:
printf("subject begin\n");
break;
case CompiledRegex::SubjectEnd:
printf("subject end\n");
break;
case CompiledRegex::LookAhead:
case CompiledRegex::NegativeLookAhead:
case CompiledRegex::LookBehind:
case CompiledRegex::NegativeLookBehind:
case CompiledRegex::LookAhead_IgnoreCase:
case CompiledRegex::NegativeLookAhead_IgnoreCase:
case CompiledRegex::LookBehind_IgnoreCase:
case CompiledRegex::NegativeLookBehind_IgnoreCase:
{
const char* name = nullptr;
if (inst.op == CompiledRegex::LookAhead)
name = "look ahead";
if (inst.op == CompiledRegex::NegativeLookAhead)
name = "negative look ahead";
if (inst.op == CompiledRegex::LookBehind)
name = "look behind";
if (inst.op == CompiledRegex::NegativeLookBehind)
name = "negative look behind";
if (inst.op == CompiledRegex::LookAhead_IgnoreCase)
name = "look ahead (ignore case)";
if (inst.op == CompiledRegex::NegativeLookAhead_IgnoreCase)
name = "negative look ahead (ignore case)";
if (inst.op == CompiledRegex::LookBehind_IgnoreCase)
name = "look behind (ignore case)";
if (inst.op == CompiledRegex::NegativeLookBehind_IgnoreCase)
name = "negative look behind (ignore case)";
String str;
for (auto it = program.lookarounds.begin() + inst.param; *it != -1; ++it)
utf8::dump(std::back_inserter(str), *it);
printf("%s (%s)\n", name, str.c_str());
break;
}
case CompiledRegex::FindNextStart:
printf("find next start\n");
break;
case CompiledRegex::Match:
printf("match\n");
}
}
}
CompiledRegex compile_regex(StringView re, RegexCompileFlags flags, MatchDirection direction)
{
return RegexCompiler{RegexParser::parse(re), flags, direction}.get_compiled_regex();
}
namespace
{
template<MatchDirection dir = MatchDirection::Forward>
struct TestVM : CompiledRegex, ThreadedRegexVM<const char*, dir>
{
using VMType = ThreadedRegexVM<const char*, dir>;
TestVM(StringView re, bool dump = false)
: CompiledRegex{compile_regex(re, RegexCompileFlags::None, dir)},
VMType{(const CompiledRegex&)*this}
{ if (dump) dump_regex(*this); }
bool exec(StringView re, RegexExecFlags flags = RegexExecFlags::AnyMatch)
{
return VMType::exec(re.begin(), re.end(), flags);
}
};
}
auto test_regex = UnitTest{[]{
{
TestVM<> vm{R"(a*b)"};
kak_assert(vm.exec("b"));
kak_assert(vm.exec("ab"));
kak_assert(vm.exec("aaab"));
kak_assert(not vm.exec("acb"));
kak_assert(not vm.exec("abc"));
kak_assert(not vm.exec(""));
}
{
TestVM<> vm{R"(^a.*b$)"};
kak_assert(vm.exec("afoob"));
kak_assert(vm.exec("ab"));
kak_assert(not vm.exec("bab"));
kak_assert(not vm.exec(""));
}
{
TestVM<> vm{R"(^(foo|qux|baz)+(bar)?baz$)"};
kak_assert(vm.exec("fooquxbarbaz"));
kak_assert(StringView{vm.captures()[2], vm.captures()[3]} == "qux");
kak_assert(not vm.exec("fooquxbarbaze"));
kak_assert(not vm.exec("quxbar"));
kak_assert(not vm.exec("blahblah"));
kak_assert(vm.exec("bazbaz"));
kak_assert(vm.exec("quxbaz"));
}
{
TestVM<> vm{R"(.*\b(foo|bar)\b.*)"};
kak_assert(vm.exec("qux foo baz"));
kak_assert(StringView{vm.captures()[2], vm.captures()[3]} == "foo");
kak_assert(not vm.exec("quxfoobaz"));
kak_assert(vm.exec("bar"));
kak_assert(not vm.exec("foobar"));
}
{
TestVM<> vm{R"((foo|bar))"};
kak_assert(vm.exec("foo"));
kak_assert(vm.exec("bar"));
kak_assert(not vm.exec("foobar"));
}
{
TestVM<> vm{R"(a{3,5}b)"};
kak_assert(not vm.exec("aab"));
kak_assert(vm.exec("aaab"));
kak_assert(not vm.exec("aaaaaab"));
kak_assert(vm.exec("aaaaab"));
}
{
TestVM<> vm{R"(a{3}b)"};
kak_assert(not vm.exec("aab"));
kak_assert(vm.exec("aaab"));
kak_assert(not vm.exec("aaaab"));
}
{
TestVM<> vm{R"(a{3,}b)"};
kak_assert(not vm.exec("aab"));
kak_assert(vm.exec("aaab"));
kak_assert(vm.exec("aaaaab"));
}
{
TestVM<> vm{R"(a{,3}b)"};
kak_assert(vm.exec("b"));
kak_assert(vm.exec("ab"));
kak_assert(vm.exec("aaab"));
kak_assert(not vm.exec("aaaab"));
}
{
TestVM<> vm{R"(f.*a(.*o))"};
kak_assert(vm.exec("blahfoobarfoobaz", RegexExecFlags::Search));
kak_assert(StringView{vm.captures()[0], vm.captures()[1]} == "foobarfoo");
kak_assert(StringView{vm.captures()[2], vm.captures()[3]} == "rfoo");
kak_assert(vm.exec("mais que fais la police", RegexExecFlags::Search));
kak_assert(StringView{vm.captures()[0], vm.captures()[1]} == "fais la po");
kak_assert(StringView{vm.captures()[2], vm.captures()[3]} == " po");
}
{
TestVM<> vm{R"([àb-dX-Z-]{3,5})"};
kak_assert(vm.exec("cà-Y"));
kak_assert(not vm.exec("àeY"));
kak_assert(vm.exec("dcbàX"));
kak_assert(not vm.exec("efg"));
}
{
TestVM<> vm{R"((a{3,5})a+)"};
kak_assert(vm.exec("aaaaaa", RegexExecFlags::None));
kak_assert(StringView{vm.captures()[2], vm.captures()[3]} == "aaaaa");
}
{
TestVM<> vm{R"((a{3,5}?)a+)"};
kak_assert(vm.exec("aaaaaa", RegexExecFlags::None));
kak_assert(StringView{vm.captures()[2], vm.captures()[3]} == "aaa");
}
{
TestVM<> vm{R"((a{3,5}?)a)"};
kak_assert(vm.exec("aaaa"));
}
{
TestVM<> vm{R"(\d{3})"};
kak_assert(vm.exec("123"));
kak_assert(not vm.exec("1x3"));
}
{
TestVM<> vm{R"([-\d]+)"};
kak_assert(vm.exec("123-456"));
kak_assert(not vm.exec("123_456"));
}
{
TestVM<> vm{R"([ \H]+)"};
kak_assert(vm.exec("abc "));
kak_assert(not vm.exec("a \t"));
}
{
TestVM<> vm{R"(\Q{}[]*+?\Ea+)"};
kak_assert(vm.exec("{}[]*+?aa"));
}
{
TestVM<> vm{R"(\Q...)"};
kak_assert(vm.exec("..."));
kak_assert(not vm.exec("bla"));
}
{
TestVM<> vm{R"(foo\Kbar)"};
kak_assert(vm.exec("foobar", RegexExecFlags::None));
kak_assert(StringView{vm.captures()[0], vm.captures()[1]} == "bar");
kak_assert(not vm.exec("bar", RegexExecFlags::None));
}
{
TestVM<> vm{R"((fo+?).*)"};
kak_assert(vm.exec("foooo", RegexExecFlags::None));
kak_assert(StringView{vm.captures()[2], vm.captures()[3]} == "fo");
}
{
TestVM<> vm{R"((?=foo).)"};
kak_assert(vm.exec("barfoo", RegexExecFlags::Search));
kak_assert(StringView{vm.captures()[0], vm.captures()[1]} == "f");
}
{
TestVM<> vm{R"((?<!f).)"};
kak_assert(vm.exec("f"));
}
{
TestVM<> vm{R"((?!f[oa]o)...)"};
kak_assert(not vm.exec("foo"));
kak_assert(vm.exec("qux"));
}
{
TestVM<> vm{R"(...(?<=f.o))"};
kak_assert(vm.exec("foo"));
kak_assert(not vm.exec("qux"));
}
{
TestVM<> vm{R"(...(?<!foo))"};
kak_assert(not vm.exec("foo"));
kak_assert(vm.exec("qux"));
}
{
TestVM<> vm{R"(Foo(?i)f[oB]+)"};
kak_assert(vm.exec("FooFOoBb"));
}
{
TestVM<> vm{R"([^\]]+)"};
kak_assert(not vm.exec("a]c"));
kak_assert(vm.exec("abc"));
}
{
TestVM<> vm{R"([^:\n]+)"};
kak_assert(not vm.exec("\nbc"));
kak_assert(vm.exec("abc"));
}
{
TestVM<> vm{R"((?:foo)+)"};
kak_assert(vm.exec("foofoofoo"));
kak_assert(not vm.exec("barbarbar"));
}
{
TestVM<> vm{R"((?<!\\)(?:\\\\)*")"};
kak_assert(vm.exec("foo\"", RegexExecFlags::Search));
}
{
TestVM<> vm{R"($)"};
kak_assert(vm.exec("foo\n", RegexExecFlags::Search));
kak_assert(*vm.captures()[0] == '\n');
}
{
TestVM<MatchDirection::Backward> vm{R"(fo{1,})"};
kak_assert(vm.exec("foo1fooo2", RegexExecFlags::Search));
kak_assert(*vm.captures()[1] == '2');
}
{
TestVM<MatchDirection::Backward> vm{R"((?<=f)oo(b[ae]r)?(?=baz))"};
kak_assert(vm.exec("foobarbazfoobazfooberbaz", RegexExecFlags::Search));
kak_assert(StringView{vm.captures()[0], vm.captures()[1]} == "oober");
kak_assert(StringView{vm.captures()[2], vm.captures()[3]} == "ber");
}
{
TestVM<MatchDirection::Backward> vm{R"((baz|boz|foo|qux)(?<!baz)(?<!o))"};
kak_assert(vm.exec("quxbozfoobaz", RegexExecFlags::Search));
kak_assert(StringView{vm.captures()[0], vm.captures()[1]} == "boz");
}
{
TestVM<MatchDirection::Backward> vm{R"(foo)"};
kak_assert(vm.exec("foofoo", RegexExecFlags::Search));
kak_assert(*vm.captures()[1] == 0);
}
{
TestVM<MatchDirection::Backward> vm{R"($)"};
kak_assert(vm.exec("foo\nbar\nbaz\nqux", RegexExecFlags::Search | RegexExecFlags::NotEndOfLine));
kak_assert(StringView{vm.captures()[0]} == "\nqux");
}
{
TestVM<> vm{R"(()*)"};
kak_assert(not vm.exec(" "));
}
{
TestVM<> vm{R"(\b(?<!-)(a|b|)(?!-)\b)"};
kak_assert(vm.exec("# foo bar", RegexExecFlags::Search));
kak_assert(*vm.captures()[0] == '#');
}
{
TestVM<> vm{R"((?=))"};
kak_assert(vm.exec(""));
}
{
TestVM<> vm{R"((?i)FOO)"};
kak_assert(vm.exec("foo", RegexExecFlags::Search));
}
{
TestVM<> vm{R"(.?(?=foo))"};
kak_assert(vm.exec("afoo", RegexExecFlags::Search));
kak_assert(*vm.captures()[0] == 'a');
}
{
TestVM<> vm{R"((?i)(?=Foo))"};
kak_assert(vm.exec("fOO", RegexExecFlags::Search));
kak_assert(*vm.captures()[0] == 'f');
}
{
TestVM<> vm{R"([d-ea-dcf-k]+)"};
kak_assert(vm.exec("abcde"));
}
{
TestVM<> vm{R"(д)"};
kak_assert(vm.exec("д", RegexExecFlags::Search));
}
{
TestVM<> vm{R"(\0\x0A\u260e\u260F)"};
const char str[] = "\0\n☎☏"; // work around the null byte in the literal
kak_assert(vm.exec({str, str + sizeof(str)-1}));
}
}};
}