#ifndef regex_impl_hh_INCLUDED #define regex_impl_hh_INCLUDED #include "unicode.hh" #include "utf8.hh" #include "utf8_iterator.hh" #include "vector.hh" namespace Kakoune { struct CompiledRegex { enum Op : char { Match, Literal, LiteralIgnoreCase, AnyChar, Matcher, Jump, Split_PrioritizeParent, Split_PrioritizeChild, Save, LineStart, LineEnd, WordBoundary, NotWordBoundary, SubjectBegin, SubjectEnd, LookAhead, LookBehind, NegativeLookAhead, NegativeLookBehind, }; using Offset = unsigned; static constexpr Offset search_prefix_size = 3 + 2 * sizeof(Offset); explicit operator bool() const { return not bytecode.empty(); } Vector bytecode; Vector> matchers; size_t save_count; }; CompiledRegex compile_regex(StringView re); template struct ThreadedRegexVM { ThreadedRegexVM(const CompiledRegex& program) : m_program{program} { kak_assert(m_program); } struct Thread { const char* inst; Vector saves = {}; }; enum class StepResult { Consumed, Matched, Failed }; StepResult step(size_t thread_index) { const auto prog_start = m_program.bytecode.data(); const auto prog_end = prog_start + m_program.bytecode.size(); while (true) { auto& thread = m_threads[thread_index]; const Codepoint cp = m_pos == m_end ? 0 : *m_pos; const CompiledRegex::Op op = (CompiledRegex::Op)*thread.inst++; switch (op) { case CompiledRegex::Literal: if (utf8::read_codepoint(thread.inst, prog_end) == cp) return StepResult::Consumed; return StepResult::Failed; case CompiledRegex::LiteralIgnoreCase: if (utf8::read_codepoint(thread.inst, prog_end) == to_lower(cp)) return StepResult::Consumed; return StepResult::Failed; case CompiledRegex::AnyChar: return StepResult::Consumed; case CompiledRegex::Jump: { auto inst = prog_start + *reinterpret_cast(thread.inst); // if instruction is already going to be executed by another thread, drop this thread if (std::find_if(m_threads.begin(), m_threads.end(), [inst](const Thread& t) { return t.inst == inst; }) != m_threads.end()) return StepResult::Failed; thread.inst = inst; break; } case CompiledRegex::Split_PrioritizeParent: { auto new_thread_inst = prog_start + *reinterpret_cast(thread.inst); thread.inst += sizeof(CompiledRegex::Offset); add_thread(thread_index+1, new_thread_inst, thread.saves); break; } case CompiledRegex::Split_PrioritizeChild: { auto new_thread_inst = thread.inst + sizeof(CompiledRegex::Offset); thread.inst = prog_start + *reinterpret_cast(thread.inst); add_thread(thread_index+1, new_thread_inst, thread.saves); break; } case CompiledRegex::Save: { const char index = *thread.inst++; thread.saves[index] = m_pos.base(); break; } case CompiledRegex::Matcher: { const int matcher_id = *thread.inst++; return m_program.matchers[matcher_id](*m_pos) ? StepResult::Consumed : StepResult::Failed; } case CompiledRegex::LineStart: if (not is_line_start()) return StepResult::Failed; break; case CompiledRegex::LineEnd: if (not is_line_end()) return StepResult::Failed; break; case CompiledRegex::WordBoundary: if (not is_word_boundary()) return StepResult::Failed; break; case CompiledRegex::NotWordBoundary: if (is_word_boundary()) return StepResult::Failed; break; case CompiledRegex::SubjectBegin: if (m_pos != m_begin) return StepResult::Failed; break; case CompiledRegex::SubjectEnd: if (m_pos != m_end) return StepResult::Failed; break; case CompiledRegex::LookAhead: case CompiledRegex::NegativeLookAhead: { int count = *thread.inst++; for (auto it = m_pos; count and it != m_end; ++it, --count) if (*it != utf8::read(thread.inst)) break; if ((op == CompiledRegex::LookAhead and count != 0) or (op == CompiledRegex::NegativeLookAhead and count == 0)) return StepResult::Failed; thread.inst = utf8::advance(thread.inst, prog_end, CharCount{count - 1}); break; } case CompiledRegex::LookBehind: case CompiledRegex::NegativeLookBehind: { int count = *thread.inst++; for (auto it = m_pos-1; count and it >= m_begin; --it, --count) if (*it != utf8::read(thread.inst)) break; if ((op == CompiledRegex::LookBehind and count != 0) or (op == CompiledRegex::NegativeLookBehind and count == 0)) return StepResult::Failed; thread.inst = utf8::advance(thread.inst, prog_end, CharCount{count - 1}); break; } case CompiledRegex::Match: return StepResult::Matched; } } return StepResult::Failed; } bool exec(Iterator begin, Iterator end, bool match = true, bool longest = false) { bool found_match = false; m_threads.clear(); const auto start_offset = (match ? CompiledRegex::search_prefix_size : 0); add_thread(0, m_program.bytecode.data() + start_offset, Vector(m_program.save_count, Iterator{})); m_begin = begin; m_end = end; for (m_pos = Utf8It{m_begin, m_begin, m_end}; m_pos != m_end; ++m_pos) { for (int i = 0; i < m_threads.size(); ) { const auto res = step(i); if (res == StepResult::Matched) { if (match) { m_threads.erase(m_threads.begin() + i); continue; // We are not at end, this is not a full match } m_captures = std::move(m_threads[i].saves); found_match = true; m_threads.resize(i); // remove this and lower priority threads if (not longest) return true; } else if (res == StepResult::Failed) m_threads.erase(m_threads.begin() + i); else { auto it = m_threads.begin() + i; if (std::find_if(m_threads.begin(), it, [inst = it->inst](auto& t) { return t.inst == inst; }) != it) m_threads.erase(it); else ++i; } } // we should never have more than one thread on the same instruction kak_assert(m_threads.size() <= m_program.bytecode.size()); if (m_threads.empty()) return found_match; } // Step remaining threads to see if they match without consuming anything else for (int i = 0; i < m_threads.size(); ++i) { if (step(i) == StepResult::Matched) { m_captures = std::move(m_threads[i].saves); found_match = true; m_threads.resize(i); // remove this and lower priority threads if (not longest) return true; } } return found_match; } void add_thread(int index, const char* inst, Vector saves) { if (std::find_if(m_threads.begin(), m_threads.end(), [inst](const Thread& t) { return t.inst == inst; }) == m_threads.end()) m_threads.insert(m_threads.begin() + index, {inst, std::move(saves)}); kak_assert(m_threads.size() < m_program.bytecode.size()); } bool is_line_start() const { return m_pos == m_begin or *(m_pos-1) == '\n'; } bool is_line_end() const { return m_pos == m_end or *m_pos == '\n'; } bool is_word_boundary() const { return m_pos == m_begin or m_pos == m_end or is_word(*(m_pos-1)) != is_word(*m_pos); } const CompiledRegex& m_program; Vector m_threads; using Utf8It = utf8::iterator; Iterator m_begin; Iterator m_end; Utf8It m_pos; Vector m_captures; }; template bool regex_match(It begin, It end, const CompiledRegex& re) { ThreadedRegexVM vm{re}; return vm.exec(begin, end, true, false); } template bool regex_match(It begin, It end, Vector& captures, const CompiledRegex& re) { ThreadedRegexVM vm{re}; if (vm.exec(begin, end, true, true)) { captures = std::move(vm.m_captures); return true; } return false; } template bool regex_search(It begin, It end, const CompiledRegex& re) { ThreadedRegexVM vm{re}; return vm.exec(begin, end, false, false); } template bool regex_search(It begin, It end, Vector& captures, const CompiledRegex& re) { ThreadedRegexVM vm{re}; if (vm.exec(begin, end, false, true)) { captures = std::move(vm.m_captures); return true; } return false; } } #endif // regex_impl_hh_INCLUDED