#ifndef string_hh_INCLUDED #define string_hh_INCLUDED #include "array_view.hh" #include "hash.hh" #include "optional.hh" #include "units.hh" #include "utf8.hh" #include "vector.hh" #include #include namespace Kakoune { class StringView; template class StringOps { public: using value_type = CharType; friend inline size_t hash_value(const Type& str) { return hash_data(str.data(), (int)str.length()); } using iterator = CharType*; using const_iterator = const CharType*; using reverse_iterator = std::reverse_iterator; using const_reverse_iterator = std::reverse_iterator; [[gnu::always_inline]] iterator begin() { return type().data(); } [[gnu::always_inline]] const_iterator begin() const { return type().data(); } [[gnu::always_inline]] iterator end() { return type().data() + (int)type().length(); } [[gnu::always_inline]] const_iterator end() const { return type().data() + (int)type().length(); } reverse_iterator rbegin() { return reverse_iterator{end()}; } const_reverse_iterator rbegin() const { return const_reverse_iterator{end()}; } reverse_iterator rend() { return reverse_iterator{begin()}; } const_reverse_iterator rend() const { return const_reverse_iterator{begin()}; } CharType& front() { return *type().data(); } const CharType& front() const { return *type().data(); } CharType& back() { return type().data()[(int)type().length() - 1]; } const CharType& back() const { return type().data()[(int)type().length() - 1]; } [[gnu::always_inline]] CharType& operator[](ByteCount pos) { return type().data()[(int)pos]; } [[gnu::always_inline]] const CharType& operator[](ByteCount pos) const { return type().data()[(int)pos]; } Codepoint operator[](CharCount pos) const { return utf8::codepoint(utf8::advance(begin(), end(), pos), end()); } CharCount char_length() const { return utf8::distance(begin(), end()); } ColumnCount column_length() const { return utf8::column_distance(begin(), end()); } [[gnu::always_inline]] bool empty() const { return type().length() == 0_byte; } ByteCount byte_count_to(CharCount count) const { return utf8::advance(begin(), end(), count) - begin(); } ByteCount byte_count_to(ColumnCount count) const { return utf8::advance(begin(), end(), count) - begin(); } CharCount char_count_to(ByteCount count) const { return utf8::distance(begin(), begin() + (int)count); } ColumnCount column_count_to(ByteCount count) const { return utf8::column_distance(begin(), begin() + (int)count); } StringView substr(ByteCount from, ByteCount length = INT_MAX) const; StringView substr(CharCount from, CharCount length = INT_MAX) const; StringView substr(ColumnCount from, ColumnCount length = INT_MAX) const; private: [[gnu::always_inline]] Type& type() { return *static_cast(this); } [[gnu::always_inline]] const Type& type() const { return *static_cast(this); } }; constexpr ByteCount strlen(const char* s) { int i = 0; while (*s++ != 0) ++i; return {i}; } class String : public StringOps { public: String() {} String(const char* content) : m_data(content, (size_t)strlen(content)) {} String(const char* content, ByteCount len) : m_data(content, (size_t)len) {} explicit String(Codepoint cp, CharCount count = 1) { reserve(utf8::codepoint_size(cp) * (int)count); while (count-- > 0) utf8::dump(std::back_inserter(*this), cp); } explicit String(Codepoint cp, ColumnCount count) { int cp_count = (int)(count / std::max(codepoint_width(cp), 1_col)); reserve(utf8::codepoint_size(cp) * cp_count); while (cp_count-- > 0) utf8::dump(std::back_inserter(*this), cp); } String(const char* begin, const char* end) : m_data(begin, end-begin) {} explicit String(StringView str); [[gnu::always_inline]] char* data() { return m_data.data(); } [[gnu::always_inline]] const char* data() const { return m_data.data(); } [[gnu::always_inline]] ByteCount length() const { return m_data.size(); } [[gnu::always_inline]] const char* c_str() const { return m_data.data(); } [[gnu::always_inline]] void append(const char* data, ByteCount count) { m_data.append(data, (size_t)count); } void clear() { m_data.clear(); } void push_back(char c) { m_data.append(&c, 1); } void force_size(ByteCount size) { m_data.force_size((size_t)size); } void reserve(ByteCount size) { m_data.reserve((size_t)size); } void resize(ByteCount size, char c); static const String ms_empty; static constexpr const char* option_type_name = "str"; // String data storage using small string optimization. // // the LSB of the last byte is used to flag if we are using the small buffer // or an allocated one. On big endian systems that means the allocated // capacity must be pair, on little endian systems that means the allocated // capacity cannot use its most significant byte, so we effectively limit // capacity to 2^24 on 32bit arch, and 2^60 on 64. union Data { using Alloc = Allocator; struct Long { static constexpr size_t max_capacity = (size_t)1 << 8 * (sizeof(size_t) - 1); char* ptr; size_t size; size_t capacity; } l; struct Short { static constexpr size_t capacity = sizeof(Long) - 2; char string[capacity+1]; unsigned char size; } s; Data() { set_empty(); } Data(const char* data, size_t size, size_t capacity); Data(const char* data, size_t size) : Data(data, size, size) {} Data(const Data& other) : Data{other.data(), other.size()} {} ~Data() { release(); } Data(Data&& other) noexcept; Data& operator=(const Data& other); Data& operator=(Data&& other) noexcept; bool is_long() const { return (s.size & 1) == 0; } size_t size() const { return is_long() ? l.size : (s.size >> 1); } size_t capacity() const { return is_long() ? l.capacity : Short::capacity; } const char* data() const { return is_long() ? l.ptr : s.string; } char* data() { return is_long() ? l.ptr : s.string; } template void reserve(size_t new_capacity); void set_size(size_t size); void force_size(size_t new_size); void append(const char* str, size_t len); void clear(); private: void release(); void set_empty() { s.size = 1; } void set_short(const char* data, size_t size); }; private: Data m_data; }; class StringView : public StringOps { public: StringView() = default; constexpr StringView(const char* data, ByteCount length) : m_data{data}, m_length{length} {} constexpr StringView(const char* data) : m_data{data}, m_length{data ? strlen(data) : 0} {} constexpr StringView(const char* begin, const char* end) : m_data{begin}, m_length{(int)(end - begin)} {} StringView(const String& str) : m_data{str.data()}, m_length{(int)str.length()} {} StringView(const char& c) : m_data(&c), m_length(1) {} StringView(int c) = delete; StringView(Codepoint c) = delete; [[gnu::always_inline]] constexpr const char* data() const { return m_data; } [[gnu::always_inline]] constexpr ByteCount length() const { return m_length; } String str() const { return {m_data, m_length}; } struct ZeroTerminatedString { ZeroTerminatedString(const char* begin, const char* end) { if (*end == '\0') unowned = begin; else owned = String::Data(begin, end - begin); } operator const char*() const { return unowned ? unowned : owned.data(); } private: String::Data owned; const char* unowned = nullptr; }; ZeroTerminatedString zstr() const { return {begin(), end()}; } private: const char* m_data; ByteCount m_length; }; static_assert(std::is_trivial::value, ""); template<> constexpr bool HashCompatible = true; template<> constexpr bool HashCompatible = true; inline String::String(StringView str) : String{str.begin(), str.length()} {} template inline StringView StringOps::substr(ByteCount from, ByteCount length) const { if (length < 0) length = INT_MAX; const auto str_len = type().length(); kak_assert(from >= 0 and from <= str_len); return StringView{ type().data() + (int)from, std::min(str_len - from, length) }; } template inline StringView StringOps::substr(CharCount from, CharCount length) const { if (length < 0) length = INT_MAX; auto beg = utf8::advance(begin(), end(), from); return StringView{ beg, utf8::advance(beg, end(), length) }; } template inline StringView StringOps::substr(ColumnCount from, ColumnCount length) const { if (length < 0) length = INT_MAX; auto beg = utf8::advance(begin(), end(), from); return StringView{ beg, utf8::advance(beg, end(), length) }; } inline String& operator+=(String& lhs, StringView rhs) { lhs.append(rhs.data(), rhs.length()); return lhs; } inline String operator+(StringView lhs, StringView rhs) { String res; res.reserve(lhs.length() + rhs.length()); res.append(lhs.data(), lhs.length()); res.append(rhs.data(), rhs.length()); return res; } [[gnu::always_inline]] inline bool operator==(const StringView& lhs, const StringView& rhs) { return lhs.length() == rhs.length() and std::equal(lhs.begin(), lhs.end(), rhs.begin()); } [[gnu::always_inline]] inline bool operator!=(const StringView& lhs, const StringView& rhs) { return not (lhs == rhs); } inline bool operator<(const StringView& lhs, const StringView& rhs) { return std::lexicographical_compare(lhs.begin(), lhs.end(), rhs.begin(), rhs.end()); } inline String operator"" _str(const char* str, size_t) { return String(str); } inline StringView operator"" _sv(const char* str, size_t) { return StringView{str}; } Vector split(StringView str, char separator, char escape); Vector split(StringView str, char separator); StringView trim_whitespaces(StringView str); String escape(StringView str, StringView characters, char escape); String unescape(StringView str, StringView characters, char escape); String indent(StringView str, StringView indent = " "); String replace(StringView str, StringView substr, StringView replacement); template String join(const Container& container, char joiner, bool esc_joiner = true) { const char to_escape[2] = { joiner, '\\' }; String res; for (const auto& str : container) { if (not res.empty()) res += joiner; res += esc_joiner ? escape(str, {to_escape, 2}, '\\') : str; } return res; } inline bool prefix_match(StringView str, StringView prefix) { return str.substr(0_byte, prefix.length()) == prefix; } bool subsequence_match(StringView str, StringView subseq); String expand_tabs(StringView line, ColumnCount tabstop, ColumnCount col = 0); Vector wrap_lines(StringView text, ColumnCount max_width); int str_to_int(StringView str); // throws on error Optional str_to_int_ifp(StringView str); inline String option_to_string(StringView opt) { return opt.str(); } inline void option_from_string(StringView str, String& opt) { opt = str.str(); } inline bool option_add(String& opt, StringView val) { opt += val; return not val.empty(); } template struct InplaceString { static_assert(N < 256, "InplaceString cannot handle sizes >= 256"); constexpr operator StringView() const { return {m_data, ByteCount{m_length}}; } operator String() const { return {m_data, ByteCount{m_length}}; } unsigned char m_length; char m_data[N]; }; struct Hex { size_t val; }; constexpr Hex hex(size_t val) { return {val}; } InplaceString<15> to_string(int val); InplaceString<23> to_string(long int val); InplaceString<23> to_string(size_t val); InplaceString<23> to_string(long long int val); InplaceString<23> to_string(Hex val); InplaceString<23> to_string(float val); InplaceString<7> to_string(Codepoint c); template decltype(auto) to_string(const StronglyTypedNumber& val) { return to_string((ValueType)val); } namespace detail { template constexpr bool is_string = std::is_convertible::value; template>> decltype(auto) format_param(const T& val) { return to_string(val); } template>> StringView format_param(const T& val) { return val; } } String format(StringView fmt, ArrayView params); template String format(StringView fmt, Types&&... params) { return format(fmt, ArrayView{detail::format_param(std::forward(params))...}); } StringView format_to(ArrayView buffer, StringView fmt, ArrayView params); template StringView format_to(ArrayView buffer, StringView fmt, Types&&... params) { return format_to(buffer, fmt, ArrayView{detail::format_param(std::forward(params))...}); } } #endif // string_hh_INCLUDED