#ifndef regex_impl_hh_INCLUDED #define regex_impl_hh_INCLUDED #include "unicode.hh" #include "utf8.hh" #include "utf8_iterator.hh" #include "vector.hh" #include "flags.hh" namespace Kakoune { struct CompiledRegex { enum Op : char { Match, Literal, LiteralIgnoreCase, AnyChar, Matcher, Jump, Split_PrioritizeParent, Split_PrioritizeChild, Save, LineStart, LineEnd, WordBoundary, NotWordBoundary, SubjectBegin, SubjectEnd, LookAhead, LookBehind, NegativeLookAhead, NegativeLookBehind, }; using Offset = unsigned; static constexpr Offset search_prefix_size = 3 + 2 * sizeof(Offset); explicit operator bool() const { return not bytecode.empty(); } Vector bytecode; Vector> matchers; size_t save_count; }; CompiledRegex compile_regex(StringView re); enum class RegexExecFlags { None = 0, Search = 1 << 0, NotBeginOfLine = 1 << 1, NotEndOfLine = 1 << 2, NotBeginOfWord = 1 << 3, NotEndOfWord = 1 << 4, NotBeginOfSubject = 1 << 5, NotInitialNull = 1 << 6, AnyMatch = 1 << 7 }; constexpr bool with_bit_ops(Meta::Type) { return true; } template struct ThreadedRegexVM { ThreadedRegexVM(const CompiledRegex& program) : m_program{program} { kak_assert(m_program); } struct Saves { int refcount; Vector pos; }; Saves* clone_saves(Saves* saves) { Saves* res = nullptr; if (not m_free_saves.empty()) { res = m_free_saves.back(); m_free_saves.pop_back(); } else { m_saves.push_back(std::make_unique()); res = m_saves.back().get(); } res->refcount = 1; res->pos = saves->pos; return res; } struct Thread { const char* inst; Saves* saves; }; enum class StepResult { Consumed, Matched, Failed }; StepResult step(size_t thread_index) { const auto prog_start = m_program.bytecode.data(); const auto prog_end = prog_start + m_program.bytecode.size(); while (true) { auto& thread = m_threads[thread_index]; const Codepoint cp = m_pos == m_end ? 0 : *m_pos; const CompiledRegex::Op op = (CompiledRegex::Op)*thread.inst++; switch (op) { case CompiledRegex::Literal: if (utf8::read_codepoint(thread.inst, prog_end) == cp) return StepResult::Consumed; return StepResult::Failed; case CompiledRegex::LiteralIgnoreCase: if (utf8::read_codepoint(thread.inst, prog_end) == to_lower(cp)) return StepResult::Consumed; return StepResult::Failed; case CompiledRegex::AnyChar: return StepResult::Consumed; case CompiledRegex::Jump: thread.inst = prog_start + *reinterpret_cast(thread.inst); break; case CompiledRegex::Split_PrioritizeParent: { auto parent = thread.inst + sizeof(CompiledRegex::Offset); auto child = prog_start + *reinterpret_cast(thread.inst); thread.inst = parent; ++thread.saves->refcount; m_threads.insert(m_threads.begin() + thread_index + 1, {child, thread.saves}); break; } case CompiledRegex::Split_PrioritizeChild: { auto parent = thread.inst + sizeof(CompiledRegex::Offset); auto child = prog_start + *reinterpret_cast(thread.inst); thread.inst = child; ++thread.saves->refcount; m_threads.insert(m_threads.begin() + thread_index + 1, {parent, thread.saves}); break; } case CompiledRegex::Save: { const char index = *thread.inst++; if (thread.saves->refcount > 1) { --thread.saves->refcount; thread.saves = clone_saves(thread.saves); } thread.saves->pos[index] = m_pos.base(); break; } case CompiledRegex::Matcher: { const int matcher_id = *thread.inst++; return m_program.matchers[matcher_id](*m_pos) ? StepResult::Consumed : StepResult::Failed; } case CompiledRegex::LineStart: if (not is_line_start()) return StepResult::Failed; break; case CompiledRegex::LineEnd: if (not is_line_end()) return StepResult::Failed; break; case CompiledRegex::WordBoundary: if (not is_word_boundary()) return StepResult::Failed; break; case CompiledRegex::NotWordBoundary: if (is_word_boundary()) return StepResult::Failed; break; case CompiledRegex::SubjectBegin: if (m_pos != m_begin or m_flags & RegexExecFlags::NotBeginOfSubject) return StepResult::Failed; break; case CompiledRegex::SubjectEnd: if (m_pos != m_end) return StepResult::Failed; break; case CompiledRegex::LookAhead: case CompiledRegex::NegativeLookAhead: { int count = *thread.inst++; for (auto it = m_pos; count and it != m_end; ++it, --count) if (*it != utf8::read(thread.inst)) break; if ((op == CompiledRegex::LookAhead and count != 0) or (op == CompiledRegex::NegativeLookAhead and count == 0)) return StepResult::Failed; thread.inst = utf8::advance(thread.inst, prog_end, CharCount{count - 1}); break; } case CompiledRegex::LookBehind: case CompiledRegex::NegativeLookBehind: { int count = *thread.inst++; for (auto it = m_pos-1; count and it >= m_begin; --it, --count) if (*it != utf8::read(thread.inst)) break; if ((op == CompiledRegex::LookBehind and count != 0) or (op == CompiledRegex::NegativeLookBehind and count == 0)) return StepResult::Failed; thread.inst = utf8::advance(thread.inst, prog_end, CharCount{count - 1}); break; } case CompiledRegex::Match: return StepResult::Matched; } } return StepResult::Failed; } bool exec(Iterator begin, Iterator end, RegexExecFlags flags) { bool found_match = false; m_threads.clear(); const auto start_offset = (flags & RegexExecFlags::Search) ? 0 : CompiledRegex::search_prefix_size; m_saves.push_back(std::make_unique(Saves{1, Vector(m_program.save_count, Iterator{})})); m_threads.push_back({m_program.bytecode.data() + start_offset, m_saves.back().get()}); m_begin = begin; m_end = end; m_flags = flags; if (flags & RegexExecFlags::NotInitialNull and m_begin == m_end) return false; auto release_saves = [this](Saves* saves) { if (--saves->refcount == 0) m_free_saves.push_back(saves); }; for (m_pos = Utf8It{m_begin, m_begin, m_end}; m_pos != m_end; ++m_pos) { for (int i = 0; i < m_threads.size(); ++i) { const auto res = step(i); if (res == StepResult::Matched) { if (not (flags & RegexExecFlags::Search) or // We are not at end, this is not a full match (flags & RegexExecFlags::NotInitialNull and m_pos == m_begin)) { m_threads[i].inst = nullptr; release_saves(m_threads[i].saves); continue; } m_captures = std::move(m_threads[i].saves->pos); if (flags & RegexExecFlags::AnyMatch) return true; found_match = true; m_threads.resize(i); // remove this and lower priority threads } else if (res == StepResult::Failed) { m_threads[i].inst = nullptr; release_saves(m_threads[i].saves); } else { auto it = m_threads.begin() + i; if (std::find_if(m_threads.begin(), it, [inst = it->inst](auto& t) { return t.inst == inst; }) != it) { m_threads[i].inst = nullptr; release_saves(m_threads[i].saves); } } } // Remove dead threads m_threads.erase(std::remove_if(m_threads.begin(), m_threads.end(), [](auto& t) { return t.inst == nullptr; }), m_threads.end()); // we should never have more than one thread on the same instruction kak_assert(m_threads.size() <= m_program.bytecode.size()); if (m_threads.empty()) return found_match; } if (found_match) return true; // Step remaining threads to see if they match without consuming anything else for (int i = 0; i < m_threads.size(); ++i) { if (step(i) == StepResult::Matched) { m_captures = std::move(m_threads[i].saves->pos); return true; } } return false; } bool is_line_start() const { return (m_pos == m_begin and not (m_flags & RegexExecFlags::NotBeginOfLine)) or *(m_pos-1) == '\n'; } bool is_line_end() const { return (m_pos == m_end and not (m_flags & RegexExecFlags::NotEndOfLine)) or *m_pos == '\n'; } bool is_word_boundary() const { return (m_pos == m_begin and not (m_flags & RegexExecFlags::NotBeginOfWord)) or (m_pos == m_end and not (m_flags & RegexExecFlags::NotEndOfWord)) or is_word(*(m_pos-1)) != is_word(*m_pos); } const CompiledRegex& m_program; Vector m_threads; using Utf8It = utf8::iterator; Iterator m_begin; Iterator m_end; Utf8It m_pos; RegexExecFlags m_flags; Vector> m_saves; Vector m_free_saves; Vector m_captures; }; template bool regex_match(It begin, It end, const CompiledRegex& re, RegexExecFlags flags = RegexExecFlags::None) { ThreadedRegexVM vm{re}; return vm.exec(begin, end, (RegexExecFlags)(flags & ~(RegexExecFlags::Search)) | RegexExecFlags::AnyMatch); } template bool regex_match(It begin, It end, Vector& captures, const CompiledRegex& re, RegexExecFlags flags = RegexExecFlags::None) { ThreadedRegexVM vm{re}; if (vm.exec(begin, end, flags & ~(RegexExecFlags::Search))) { captures = std::move(vm.m_captures); return true; } return false; } template bool regex_search(It begin, It end, const CompiledRegex& re, RegexExecFlags flags = RegexExecFlags::None) { ThreadedRegexVM vm{re}; return vm.exec(begin, end, flags | RegexExecFlags::Search | RegexExecFlags::AnyMatch); } template bool regex_search(It begin, It end, Vector& captures, const CompiledRegex& re, RegexExecFlags flags = RegexExecFlags::None) { ThreadedRegexVM vm{re}; if (vm.exec(begin, end, flags | RegexExecFlags::Search)) { captures = std::move(vm.m_captures); return true; } return false; } } #endif // regex_impl_hh_INCLUDED