#include "shell_manager.hh" #include "buffer_utils.hh" #include "clock.hh" #include "context.hh" #include "display_buffer.hh" #include "event_manager.hh" #include "face_registry.hh" #include "file.hh" #include "flags.hh" #include "option.hh" #include "regex.hh" #include #include #include #include #include #include extern char **environ; namespace Kakoune { ShellManager::ShellManager(ConstArrayView builtin_env_vars) : m_env_vars{builtin_env_vars} { // Get a guaranteed to be POSIX shell binary { auto size = confstr(_CS_PATH, nullptr, 0); String path; path.resize(size-1, 0); confstr(_CS_PATH, path.data(), size); for (auto dir : StringView{path} | split(':')) { String candidate = format("{}/sh", dir); struct stat st; if (stat(candidate.c_str(), &st)) continue; bool executable = (st.st_mode & S_IXUSR) | (st.st_mode & S_IXGRP) | (st.st_mode & S_IXOTH); if (S_ISREG(st.st_mode) and executable) { m_shell = std::move(candidate); break; } } if (m_shell.empty()) throw runtime_error{format("unable to find a posix shell in {}", path)}; } // Add Kakoune binary location to the path to guarantee that %sh{ ... } // have access to the kak command regardless of if the user installed it { const char* path = getenv("PATH"); auto new_path = format("{}:{}", path, split_path(get_kak_binary_path()).first); setenv("PATH", new_path.c_str(), 1); } } namespace { struct Pipe { Pipe(bool create = true) : m_fd{-1, -1} { if (create and ::pipe(m_fd) < 0) throw runtime_error(format("unable to create pipe (fds: {}/{}; errno: {})", m_fd[0], m_fd[1], ::strerror(errno))); } ~Pipe() { close_read_fd(); close_write_fd(); } int read_fd() const { return m_fd[0]; } int write_fd() const { return m_fd[1]; } void close_read_fd() { close_fd(m_fd[0]); } void close_write_fd() { close_fd(m_fd[1]); } private: void close_fd(int& fd) { if (fd != -1) { close(fd); fd = -1; } } int m_fd[2]; }; template pid_t spawn_shell(const char* shell, StringView cmdline, ConstArrayView params, ConstArrayView kak_env, Func setup_child) { Vector envptrs; for (char** envp = environ; *envp; ++envp) envptrs.push_back(*envp); for (auto& env : kak_env) envptrs.push_back(env.c_str()); envptrs.push_back(nullptr); auto cmdlinezstr = cmdline.zstr(); Vector execparams = { shell, "-c", cmdlinezstr }; if (not params.empty()) execparams.push_back(shell); for (auto& param : params) execparams.push_back(param.c_str()); execparams.push_back(nullptr); if (pid_t pid = fork()) return pid; setup_child(); execve(shell, (char* const*)execparams.data(), (char* const*)envptrs.data()); exit(-1); return -1; } Vector generate_env(StringView cmdline, const Context& context, const ShellContext& shell_context) { static const Regex re(R"(\bkak_(\w+)\b)"); Vector kak_env; for (RegexIterator it{cmdline.begin(), cmdline.end(), re}, end; it != end; ++it) { StringView name{(*it)[1].first, (*it)[1].second}; auto match_name = [&](const String& s) { return s.substr(0_byte, name.length()) == name and s.substr(name.length(), 1_byte) == "="; }; if (any_of(kak_env, match_name)) continue; auto var_it = shell_context.env_vars.find(name); try { const String& value = var_it != shell_context.env_vars.end() ? var_it->value : ShellManager::instance().get_val(name, context); kak_env.push_back(format("kak_{}={}", name, value)); } catch (runtime_error&) {} } return kak_env; } } std::pair ShellManager::eval( StringView cmdline, const Context& context, StringView input, Flags flags, const ShellContext& shell_context) { const DebugFlags debug_flags = context.options()["debug"].get(); const bool profile = debug_flags & DebugFlags::Profile; if (debug_flags & DebugFlags::Shell) write_to_debug_buffer(format("shell:\n{}\n----\n", cmdline)); auto start_time = profile ? Clock::now() : Clock::time_point{}; auto kak_env = generate_env(cmdline, context, shell_context); auto spawn_time = profile ? Clock::now() : Clock::time_point{}; Pipe child_stdin{not input.empty()}, child_stdout, child_stderr; pid_t pid = spawn_shell(m_shell.c_str(), cmdline, shell_context.params, kak_env, [&child_stdin, &child_stdout, &child_stderr] { auto move = [](int oldfd, int newfd) { dup2(oldfd, newfd); close(oldfd); }; if (child_stdin.read_fd() != -1) { close(child_stdin.write_fd()); move(child_stdin.read_fd(), 0); } else move(open("/dev/null", O_RDONLY), 0); close(child_stdout.read_fd()); move(child_stdout.write_fd(), 1); close(child_stderr.read_fd()); move(child_stderr.write_fd(), 2); }); child_stdin.close_read_fd(); child_stdout.close_write_fd(); child_stderr.close_write_fd(); auto wait_time = Clock::now(); struct PipeReader : FDWatcher { PipeReader(Pipe& pipe, String& contents) : FDWatcher(pipe.read_fd(), FdEvents::Read, [&contents, &pipe](FDWatcher& watcher, FdEvents, EventMode) { char buffer[1024]; while (fd_readable(pipe.read_fd())) { size_t size = ::read(pipe.read_fd(), buffer, 1024); if (size <= 0) { pipe.close_read_fd(); watcher.disable(); return; } contents += StringView{buffer, buffer+size}; } }) {} }; struct PipeWriter : FDWatcher { PipeWriter(Pipe& pipe, StringView contents) : FDWatcher(pipe.write_fd(), FdEvents::Write, [contents, &pipe](FDWatcher& watcher, FdEvents, EventMode) mutable { while (fd_writable(pipe.write_fd())) { ssize_t size = ::write(pipe.write_fd(), contents.begin(), (size_t)contents.length()); if (size > 0) contents = contents.substr(ByteCount{(int)size}); if (size == -1 and (errno == EAGAIN or errno == EWOULDBLOCK)) return; if (size < 0 or contents.empty()) { pipe.close_write_fd(); watcher.disable(); return; } } }) { int flags = fcntl(pipe.write_fd(), F_GETFL, 0); fcntl(pipe.write_fd(), F_SETFL, flags | O_NONBLOCK); } }; String stdout_contents, stderr_contents; PipeReader stdout_reader{child_stdout, stdout_contents}; PipeReader stderr_reader{child_stderr, stderr_contents}; PipeWriter stdin_writer{child_stdin, input}; // block SIGCHLD to make sure we wont receive it before // our call to pselect, that will end up blocking indefinitly. sigset_t mask, orig_mask; sigemptyset(&mask); sigaddset(&mask, SIGCHLD); sigprocmask(SIG_BLOCK, &mask, &orig_mask); auto restore_mask = on_scope_end([&] { sigprocmask(SIG_SETMASK, &orig_mask, nullptr); }); int status = 0; // check for termination now that SIGCHLD is blocked bool terminated = waitpid(pid, &status, WNOHANG) != 0; using namespace std::chrono; static constexpr seconds wait_timeout{1}; bool wait_notified = false; Timer wait_timer{wait_time + wait_timeout, [&](Timer& timer) { auto wait_duration = Clock::now() - wait_time; context.print_status({ format("waiting for shell command to finish ({}s)", duration_cast(wait_duration).count()), get_face("Information") }, true); timer.set_next_date(Clock::now() + wait_timeout); wait_notified = true; }, EventMode::Urgent}; while (not terminated or child_stdin.write_fd() != -1 or ((flags & Flags::WaitForStdout) and (child_stdout.read_fd() != -1 or child_stderr.read_fd() != -1))) { EventManager::instance().handle_next_events(EventMode::Urgent, &orig_mask); if (not terminated) terminated = waitpid(pid, &status, WNOHANG) != 0; } if (not stderr_contents.empty()) write_to_debug_buffer(format("shell stderr: <<<\n{}>>>", stderr_contents)); if (profile) { auto end_time = Clock::now(); auto full = duration_cast(end_time - start_time); auto spawn = duration_cast(wait_time - spawn_time); auto wait = duration_cast(end_time - wait_time); write_to_debug_buffer(format("shell execution took {} us (spawn: {}, wait: {})", (size_t)full.count(), (size_t)spawn.count(), (size_t)wait.count())); } if (wait_notified) // clear the status line context.print_status({}, true); return { std::move(stdout_contents), WIFEXITED(status) ? WEXITSTATUS(status) : -1 }; } String ShellManager::get_val(StringView name, const Context& context) const { auto env_var = find_if(m_env_vars, [name](const EnvVarDesc& desc) { return desc.prefix ? prefix_match(name, desc.str) : name == desc.str; }); if (env_var == m_env_vars.end()) throw runtime_error("no such env var: " + name); return env_var->func(name, context); } CandidateList ShellManager::complete_env_var(StringView prefix, ByteCount cursor_pos) const { return complete(prefix, cursor_pos, m_env_vars | transform(&EnvVarDesc::str)); } }