#include "regex_impl.hh" #include "vector.hh" #include "unit_tests.hh" #include "string.hh" #include "unicode.hh" #include "exception.hh" #include "array_view.hh" namespace Kakoune { struct CompiledRegex { enum Op : char { Match, Literal, AnyChar, CharRange, NegativeCharRange, Jump, Split, Save, LineStart, LineEnd, WordBoundary, NotWordBoundary, SubjectBegin, SubjectEnd, }; using Offset = unsigned; Vector bytecode; size_t save_count; }; namespace RegexCompiler { struct Quantifier { enum Type { One, Optional, RepeatZeroOrMore, RepeatOneOrMore, RepeatMinMax, }; Type type = One; int min = -1, max = -1; bool allows_none() const { return type == Quantifier::Optional or type == Quantifier::RepeatZeroOrMore or (type == Quantifier::RepeatMinMax and min <= 0); } bool allows_infinite_repeat() const { return type == Quantifier::RepeatZeroOrMore or type == Quantifier::RepeatOneOrMore or (type == Quantifier::RepeatMinMax and max == -1); }; }; enum class Op { Literal, AnyChar, CharRange, NegativeCharRange, Sequence, Alternation, LineStart, LineEnd, WordBoundary, NotWordBoundary, SubjectBegin, SubjectEnd, }; struct AstNode { Op op; char value; Quantifier quantifier; Vector> children; }; using AstNodePtr = std::unique_ptr; struct CharRange { char min, max; }; struct ParsedRegex { AstNodePtr ast; size_t capture_count; Vector> ranges; }; AstNodePtr make_ast_node(Op op, char value = -1, Quantifier quantifier = {Quantifier::One}) { return AstNodePtr{new AstNode{op, value, quantifier, {}}}; } // Recursive descent parser based on naming used in the ECMAScript // standard, although the syntax is not fully compatible. template struct Parser { static ParsedRegex parse(Iterator pos, Iterator end) { ParsedRegex res; res.capture_count = 1; res.ast = disjunction(res, pos, end, 0); return res; } private: static AstNodePtr disjunction(ParsedRegex& parsed_regex, Iterator& pos, Iterator end, char capture = -1) { AstNodePtr node = alternative(parsed_regex, pos, end); if (pos == end or *pos != '|') { node->value = capture; return node; } AstNodePtr res = make_ast_node(Op::Alternation); res->children.push_back(std::move(node)); res->children.push_back(disjunction(parsed_regex, ++pos, end)); res->value = capture; return res; } static AstNodePtr alternative(ParsedRegex& parsed_regex, Iterator& pos, Iterator end) { AstNodePtr res = make_ast_node(Op::Sequence); while (auto node = term(parsed_regex, pos, end)) res->children.push_back(std::move(node)); return res; } static AstNodePtr term(ParsedRegex& parsed_regex, Iterator& pos, Iterator end) { if (auto node = assertion(parsed_regex, pos, end)) return node; if (auto node = atom(parsed_regex, pos, end)) { node->quantifier = quantifier(parsed_regex, pos, end); return node; } return nullptr; } static AstNodePtr assertion(ParsedRegex& parsed_regex, Iterator& pos, Iterator end) { switch (*pos) { case '^': ++pos; return make_ast_node(Op::LineStart); case '$': ++pos; return make_ast_node(Op::LineEnd); case '\\': if (pos+1 == end) return nullptr; switch (*(pos+1)) { case 'b': pos += 2; return make_ast_node(Op::WordBoundary); case 'B': pos += 2; return make_ast_node(Op::NotWordBoundary); case '`': pos += 2; return make_ast_node(Op::SubjectBegin); case '\'': pos += 2; return make_ast_node(Op::SubjectEnd); } break; /* TODO: look ahead, look behind */ } return nullptr; } static AstNodePtr atom(ParsedRegex& parsed_regex, Iterator& pos, Iterator end) { const auto c = *pos; switch (c) { case '.': ++pos; return make_ast_node(Op::AnyChar); case '(': { ++pos; auto content = disjunction(parsed_regex, pos, end, parsed_regex.capture_count++); if (pos == end or *pos != ')') throw runtime_error{"Unclosed parenthesis"}; ++pos; return content; } case '\\': ++pos; return atom_escape(parsed_regex, pos, end); case '[': ++pos; return character_class(parsed_regex, pos, end); default: if (contains("^$.*+?()[]{}|", c)) return nullptr; ++pos; return make_ast_node(Op::Literal, c); } } static AstNodePtr atom_escape(ParsedRegex& parsed_regex, Iterator& pos, Iterator end) { const auto c = *pos; struct { char name; char value; } control_escapes[] = { { 'f', '\f' }, { 'n', '\n' }, { 'r', '\r' }, { 't', '\t' }, { 'v', '\v' } }; for (auto& control : control_escapes) { if (control.name == c) return make_ast_node(Op::Literal, control.value); } // TOOD: \c..., \0..., '\0x...', \u... if (contains("^$\\.*+?()[]{}|", c)) // SyntaxCharacter return make_ast_node(Op::Literal, c); throw runtime_error{"Unknown atom escape"}; } static AstNodePtr character_class(ParsedRegex& parsed_regex, Iterator& pos, Iterator end) { const bool negative = pos != end and *pos == '^'; if (negative) ++pos; Vector ranges; while (pos != end and *pos != ']') { const auto c = *pos++; if (c == '-') { ranges.push_back({ '-', 0 }); continue; } if (pos == end) break; CharRange range = { c, 0 }; if (*pos == '-') { if (++pos == end) break; range.max = *pos++; if (range.min > range.max) throw runtime_error{"Invalid range specified"}; } ranges.push_back(range); } if (pos == end) throw runtime_error{"Unclosed character class"}; ++pos; auto ranges_id = parsed_regex.ranges.size(); parsed_regex.ranges.push_back(std::move(ranges)); return make_ast_node(negative ? Op::NegativeCharRange : Op::CharRange, ranges_id); } static Quantifier quantifier(ParsedRegex& parsed_regex, Iterator& pos, Iterator end) { auto read_int = [](Iterator& pos, Iterator begin, Iterator end) { int res = 0; for (; pos != end; ++pos) { const auto c = *pos; if (c < '0' or c > '9') return pos == begin ? -1 : res; res = res * 10 + c - '0'; } return res; }; switch (*pos) { case '*': ++pos; return {Quantifier::RepeatZeroOrMore}; case '+': ++pos; return {Quantifier::RepeatOneOrMore}; case '?': ++pos; return {Quantifier::Optional}; case '{': { auto it = pos+1; int min = read_int(it, it, end); int max = -1; if (*it == ',') { ++it; max = read_int(it, it, end); } if (*it++ != '}') throw runtime_error{"expected closing bracket"}; pos = it; return {Quantifier::RepeatMinMax, min, max}; } default: return {Quantifier::One}; } } }; CompiledRegex::Offset alloc_offset(CompiledRegex& program) { auto pos = program.bytecode.size(); program.bytecode.resize(pos + sizeof(CompiledRegex::Offset)); return pos; } CompiledRegex::Offset& get_offset(CompiledRegex& program, CompiledRegex::Offset pos) { return *reinterpret_cast(&program.bytecode[pos]); } CompiledRegex::Offset compile_node(CompiledRegex& program, const ParsedRegex& parsed_regex, const AstNodePtr& node); CompiledRegex::Offset compile_node_inner(CompiledRegex& program, const ParsedRegex& parsed_regex, const AstNodePtr& node) { const auto start_pos = program.bytecode.size(); const char capture = (node->op == Op::Alternation or node->op == Op::Sequence) ? node->value : -1; if (capture >= 0) { program.bytecode.push_back(CompiledRegex::Save); program.bytecode.push_back(capture * 2); } Vector goto_inner_end_offsets; switch (node->op) { case Op::Literal: program.bytecode.push_back(CompiledRegex::Literal); program.bytecode.push_back(node->value); break; case Op::AnyChar: program.bytecode.push_back(CompiledRegex::AnyChar); break; case Op::CharRange: case Op::NegativeCharRange: { auto& ranges = parsed_regex.ranges[node->value]; size_t single_count = std::count_if(ranges.begin(), ranges.end(), [](auto& r) { return r.max == 0; }); program.bytecode.push_back(node->op == Op::CharRange ? CompiledRegex::CharRange : CompiledRegex::NegativeCharRange); program.bytecode.push_back((char)single_count); program.bytecode.push_back((char)(ranges.size() - single_count)); for (auto& r : ranges) { if (r.max == 0) program.bytecode.push_back(r.min); } for (auto& r : ranges) { if (r.max != 0) { program.bytecode.push_back(r.min); program.bytecode.push_back(r.max); } } break; } case Op::Sequence: for (auto& child : node->children) compile_node(program, parsed_regex, child); break; case Op::Alternation: { auto& children = node->children; kak_assert(children.size() == 2); program.bytecode.push_back(CompiledRegex::Split); auto offset = alloc_offset(program); compile_node(program, parsed_regex, children[0]); program.bytecode.push_back(CompiledRegex::Jump); goto_inner_end_offsets.push_back(alloc_offset(program)); auto right_pos = compile_node(program, parsed_regex, children[1]); get_offset(program, offset) = right_pos; break; } case Op::LineStart: program.bytecode.push_back(CompiledRegex::LineStart); break; case Op::LineEnd: program.bytecode.push_back(CompiledRegex::LineEnd); break; case Op::WordBoundary: program.bytecode.push_back(CompiledRegex::WordBoundary); break; case Op::NotWordBoundary: program.bytecode.push_back(CompiledRegex::NotWordBoundary); break; case Op::SubjectBegin: program.bytecode.push_back(CompiledRegex::SubjectBegin); break; case Op::SubjectEnd: program.bytecode.push_back(CompiledRegex::SubjectEnd); break; } for (auto& offset : goto_inner_end_offsets) get_offset(program, offset) = program.bytecode.size(); if (capture >= 0) { program.bytecode.push_back(CompiledRegex::Save); program.bytecode.push_back(capture * 2 + 1); } return start_pos; } CompiledRegex::Offset compile_node(CompiledRegex& program, const ParsedRegex& parsed_regex, const AstNodePtr& node) { CompiledRegex::Offset pos = program.bytecode.size(); Vector goto_end_offsets; if (node->quantifier.allows_none()) { program.bytecode.push_back(CompiledRegex::Split); goto_end_offsets.push_back(alloc_offset(program)); } auto inner_pos = compile_node_inner(program, parsed_regex, node); // Write the node multiple times when we have a min count quantifier for (int i = 1; i < node->quantifier.min; ++i) inner_pos = compile_node_inner(program, parsed_regex, node); if (node->quantifier.allows_infinite_repeat()) { program.bytecode.push_back(CompiledRegex::Split); get_offset(program, alloc_offset(program)) = inner_pos; } // Write the node as an optional match for the min -> max counts else for (int i = std::max(1, node->quantifier.min); // STILL UGLY ! i < node->quantifier.max; ++i) { program.bytecode.push_back(CompiledRegex::Split); goto_end_offsets.push_back(alloc_offset(program)); compile_node_inner(program, parsed_regex, node); } for (auto offset : goto_end_offsets) get_offset(program, offset) = program.bytecode.size(); return pos; } constexpr CompiledRegex::Offset prefix_size = 3 + 2 * sizeof(CompiledRegex::Offset); // Add a '.*' as the first instructions for the search use case void write_search_prefix(CompiledRegex& program) { kak_assert(program.bytecode.empty()); program.bytecode.push_back(CompiledRegex::Split); get_offset(program, alloc_offset(program)) = prefix_size; program.bytecode.push_back(CompiledRegex::AnyChar); program.bytecode.push_back(CompiledRegex::Split); get_offset(program, alloc_offset(program)) = 1 + sizeof(CompiledRegex::Offset); } CompiledRegex compile(const ParsedRegex& parsed_regex) { CompiledRegex res; write_search_prefix(res); compile_node(res, parsed_regex, parsed_regex.ast); res.bytecode.push_back(CompiledRegex::Match); res.save_count = parsed_regex.capture_count * 2; return res; } template CompiledRegex compile(Iterator begin, Iterator end) { return compile(Parser::parse(begin, end)); } } void dump(const CompiledRegex& program) { for (auto pos = program.bytecode.begin(); pos < program.bytecode.end(); ) { printf("%4zd ", pos - program.bytecode.begin()); const auto op = (CompiledRegex::Op)*pos++; switch (op) { case CompiledRegex::Literal: printf("literal %c\n", *pos++); break; case CompiledRegex::AnyChar: printf("any char\n"); break; case CompiledRegex::Jump: printf("jump %u\n", *reinterpret_cast(&*pos)); pos += sizeof(CompiledRegex::Offset); break; case CompiledRegex::Split: { printf("split %u\n", *reinterpret_cast(&*pos)); pos += sizeof(CompiledRegex::Offset); break; } case CompiledRegex::Save: printf("save %d\n", *pos++); break; case CompiledRegex::CharRange: case CompiledRegex::NegativeCharRange: { printf("%schar range, [", op == CompiledRegex::NegativeCharRange ? "negative " : ""); auto single_count = *pos++; auto range_count = *pos++; for (int i = 0; i < single_count; ++i) printf("%c", *pos++); printf("]"); for (int i = 0; i < range_count; ++i) { auto min = *pos++; auto max = *pos++; printf(" [%c-%c]", min, max); } printf("\n"); break; } case CompiledRegex::LineStart: printf("line start\n"); break; case CompiledRegex::LineEnd: printf("line end\n"); break; case CompiledRegex::WordBoundary: printf("word boundary\n"); break; case CompiledRegex::NotWordBoundary: printf("not word boundary\n"); break; case CompiledRegex::SubjectBegin: printf("subject begin\n"); break; case CompiledRegex::SubjectEnd: printf("subject end\n"); break; case CompiledRegex::Match: printf("match\n"); } } } struct ThreadedRegexVM { ThreadedRegexVM(const CompiledRegex& program) : m_program{program} {} struct Thread { const char* inst; Vector saves = {}; }; enum class StepResult { Consumed, Matched, Failed }; StepResult step(size_t thread_index) { while (true) { auto& thread = m_threads[thread_index]; char c = m_pos == m_subject.end() ? 0 : *m_pos; const CompiledRegex::Op op = (CompiledRegex::Op)*thread.inst++; switch (op) { case CompiledRegex::Literal: if (*thread.inst++ == c) return StepResult::Consumed; return StepResult::Failed; case CompiledRegex::AnyChar: return StepResult::Consumed; case CompiledRegex::Jump: { auto inst = m_program.bytecode.data() + *reinterpret_cast(thread.inst); // if instruction is already going to be executed by another thread, drop this thread if (std::find_if(m_threads.begin(), m_threads.end(), [inst](const Thread& t) { return t.inst == inst; }) != m_threads.end()) return StepResult::Failed; thread.inst = inst; break; } case CompiledRegex::Split: { add_thread(*reinterpret_cast(thread.inst), thread.saves); // thread is invalidated now, as we mutated the m_thread vector m_threads[thread_index].inst += sizeof(CompiledRegex::Offset); break; } case CompiledRegex::Save: { const char index = *thread.inst++; thread.saves[index] = m_pos; break; } case CompiledRegex::CharRange: case CompiledRegex::NegativeCharRange: { auto single_count = *thread.inst++; auto range_count = *thread.inst++; const char* end = thread.inst + single_count + 2 * range_count; for (int i = 0; i < single_count; ++i) { auto candidate = *thread.inst++; if (c == candidate) { thread.inst = end; return op == CompiledRegex::CharRange ? StepResult::Consumed : StepResult::Failed; } } for (int i = 0; i < range_count; ++i) { auto min = *thread.inst++; auto max = *thread.inst++; if (min <= c and c <= max) { thread.inst = end; return op == CompiledRegex::CharRange ? StepResult::Consumed : StepResult::Failed; } } kak_assert(thread.inst == end); return op == CompiledRegex::CharRange ? StepResult::Failed : StepResult::Consumed; } case CompiledRegex::LineStart: if (not is_line_start()) return StepResult::Failed; break; case CompiledRegex::LineEnd: if (not is_line_end()) return StepResult::Failed; break; case CompiledRegex::WordBoundary: if (not is_word_boundary()) return StepResult::Failed; break; case CompiledRegex::NotWordBoundary: if (is_word_boundary()) return StepResult::Failed; break; case CompiledRegex::SubjectBegin: if (m_pos != m_subject.begin()) return StepResult::Failed; break; case CompiledRegex::SubjectEnd: if (m_pos != m_subject.end()) return StepResult::Failed; break; case CompiledRegex::Match: return StepResult::Matched; } } return StepResult::Failed; } bool exec(StringView data, bool match = true) { m_threads.clear(); add_thread(match ? RegexCompiler::prefix_size : 0, Vector(m_program.save_count, nullptr)); m_subject = data; m_pos = data.begin(); for (m_pos = m_subject.begin(); m_pos != m_subject.end(); ++m_pos) { for (int i = 0; i < m_threads.size(); ++i) { const auto res = step(i); if (res == StepResult::Matched) { m_captures = std::move(m_threads[i].saves); return true; } else if (res == StepResult::Failed) m_threads[i].inst = nullptr; } m_threads.erase(std::remove_if(m_threads.begin(), m_threads.end(), [](const Thread& t) { return t.inst == nullptr; }), m_threads.end()); if (m_threads.empty()) return false; } // Step remaining threads to see if they match without consuming anything else for (int i = 0; i < m_threads.size(); ++i) { if (step(i) == StepResult::Matched) { m_captures = std::move(m_threads[i].saves); return true; } } return false; } void add_thread(CompiledRegex::Offset pos, Vector saves) { const char* inst = m_program.bytecode.data() + pos; if (std::find_if(m_threads.begin(), m_threads.end(), [inst](const Thread& t) { return t.inst == inst; }) == m_threads.end()) m_threads.push_back({inst, std::move(saves)}); } bool is_line_start() const { return m_pos == m_subject.begin() or *(m_pos-1) == '\n'; } bool is_line_end() const { return m_pos == m_subject.end() or *m_pos == '\n'; } bool is_word_boundary() const { return m_pos == m_subject.begin() or m_pos == m_subject.end() or is_word(*(m_pos-1)) != is_word(*m_pos); } const CompiledRegex& m_program; Vector m_threads; Vector m_captures; StringView m_subject; const char* m_pos; }; auto test_regex = UnitTest{[]{ { StringView re = R"(a*b)"; auto program = RegexCompiler::compile(re.begin(), re.end()); dump(program); ThreadedRegexVM vm{program}; kak_assert(vm.exec("b")); kak_assert(vm.exec("ab")); kak_assert(vm.exec("aaab")); kak_assert(not vm.exec("acb")); kak_assert(not vm.exec("")); } { StringView re = R"(^a.*b$)"; auto program = RegexCompiler::compile(re.begin(), re.end()); dump(program); ThreadedRegexVM vm{program}; kak_assert(vm.exec("afoob")); kak_assert(vm.exec("ab")); kak_assert(not vm.exec("bab")); kak_assert(not vm.exec("")); } { StringView re = R"(^(foo|qux|baz)+(bar)?baz$)"; auto program = RegexCompiler::compile(re.begin(), re.end()); dump(program); ThreadedRegexVM vm{program}; kak_assert(vm.exec("fooquxbarbaz")); kak_assert(StringView{vm.m_captures[2], vm.m_captures[3]} == "qux"); kak_assert(not vm.exec("fooquxbarbaze")); kak_assert(not vm.exec("quxbar")); kak_assert(not vm.exec("blahblah")); kak_assert(vm.exec("bazbaz")); kak_assert(vm.exec("quxbaz")); } { StringView re = R"(.*\b(foo|bar)\b.*)"; auto program = RegexCompiler::compile(re.begin(), re.end()); dump(program); ThreadedRegexVM vm{program}; kak_assert(vm.exec("qux foo baz")); kak_assert(StringView{vm.m_captures[2], vm.m_captures[3]} == "foo"); kak_assert(not vm.exec("quxfoobaz")); kak_assert(vm.exec("bar")); kak_assert(not vm.exec("foobar")); } { StringView re = R"(\`(foo|bar)\')"; auto program = RegexCompiler::compile(re.begin(), re.end()); dump(program); ThreadedRegexVM vm{program}; kak_assert(vm.exec("foo")); kak_assert(vm.exec("bar")); kak_assert(not vm.exec("foobar")); } { StringView re = R"(\`a{3,5}b\')"; auto program = RegexCompiler::compile(re.begin(), re.end()); dump(program); ThreadedRegexVM vm{program}; kak_assert(not vm.exec("aab")); kak_assert(vm.exec("aaab")); kak_assert(not vm.exec("aaaaaab")); kak_assert(vm.exec("aaaaab")); } { StringView re = R"(\`a{3,}b\')"; auto program = RegexCompiler::compile(re.begin(), re.end()); dump(program); ThreadedRegexVM vm{program}; kak_assert(not vm.exec("aab")); kak_assert(vm.exec("aaab")); kak_assert(vm.exec("aaaaab")); } { StringView re = R"(\`a{,3}b\')"; auto program = RegexCompiler::compile(re.begin(), re.end()); dump(program); ThreadedRegexVM vm{program}; kak_assert(vm.exec("b")); kak_assert(vm.exec("ab")); kak_assert(vm.exec("aaab")); kak_assert(not vm.exec("aaaab")); } { StringView re = R"(f.*a)"; auto program = RegexCompiler::compile(re.begin(), re.end()); dump(program); ThreadedRegexVM vm{program}; kak_assert(vm.exec("blahfoobarfoobaz", false)); kak_assert(StringView{vm.m_captures[0], vm.m_captures[1]} == "fooba"); // TODO: leftmost, longest kak_assert(vm.exec("mais que fais la police", false)); kak_assert(StringView{vm.m_captures[0], vm.m_captures[1]} == "fa"); } { StringView re = R"([ab-dX-Z]{3,5})"; auto program = RegexCompiler::compile(re.begin(), re.end()); dump(program); ThreadedRegexVM vm{program}; kak_assert(vm.exec("acY")); kak_assert(not vm.exec("aeY")); kak_assert(vm.exec("abcdX")); kak_assert(not vm.exec("efg")); } }}; }