home/src/regex_impl.cc

878 lines
29 KiB
C++
Raw Normal View History

#include "regex_impl.hh"
#include "vector.hh"
#include "unit_tests.hh"
#include "string.hh"
#include "unicode.hh"
#include "exception.hh"
2017-09-17 12:15:43 +02:00
#include "array_view.hh"
namespace Kakoune
{
struct CompiledRegex
{
enum Op : char
{
Match,
Literal,
AnyChar,
CharRange,
NegativeCharRange,
Jump,
Split_PrioritizeParent,
Split_PrioritizeChild,
Save,
LineStart,
LineEnd,
WordBoundary,
NotWordBoundary,
SubjectBegin,
SubjectEnd,
};
using Offset = unsigned;
Vector<char> bytecode;
size_t save_count;
};
namespace RegexCompiler
{
struct Quantifier
2017-09-17 12:15:43 +02:00
{
enum Type
{
One,
Optional,
RepeatZeroOrMore,
RepeatOneOrMore,
RepeatMinMax,
};
Type type = One;
int min = -1, max = -1;
bool allows_none() const
{
return type == Quantifier::Optional or
type == Quantifier::RepeatZeroOrMore or
(type == Quantifier::RepeatMinMax and min <= 0);
}
bool allows_infinite_repeat() const
{
return type == Quantifier::RepeatZeroOrMore or
type == Quantifier::RepeatOneOrMore or
(type == Quantifier::RepeatMinMax and max == -1);
};
2017-09-17 12:15:43 +02:00
};
2017-09-17 12:15:43 +02:00
enum class Op
{
Literal,
AnyChar,
CharRange,
NegativeCharRange,
2017-09-17 12:15:43 +02:00
Sequence,
Alternation,
LineStart,
LineEnd,
WordBoundary,
NotWordBoundary,
SubjectBegin,
SubjectEnd,
2017-09-17 12:15:43 +02:00
};
2017-09-17 12:15:43 +02:00
struct AstNode
{
Op op;
char value;
Quantifier quantifier;
Vector<std::unique_ptr<AstNode>> children;
};
using AstNodePtr = std::unique_ptr<AstNode>;
struct CharRange { char min, max; };
struct ParsedRegex
{
AstNodePtr ast;
size_t capture_count;
Vector<Vector<CharRange>> ranges;
};
2017-09-19 09:56:21 +02:00
AstNodePtr make_ast_node(Op op, char value = -1,
Quantifier quantifier = {Quantifier::One})
2017-09-17 12:15:43 +02:00
{
return AstNodePtr{new AstNode{op, value, quantifier, {}}};
}
// Recursive descent parser based on naming used in the ECMAScript
2017-09-19 04:57:02 +02:00
// standard, although the syntax is not fully compatible.
2017-09-17 12:15:43 +02:00
template<typename Iterator>
struct Parser
{
static ParsedRegex parse(Iterator pos, Iterator end)
{
ParsedRegex res;
res.capture_count = 1;
res.ast = disjunction(res, pos, end, 0);
return res;
}
2017-09-17 12:15:43 +02:00
private:
static AstNodePtr disjunction(ParsedRegex& parsed_regex, Iterator& pos, Iterator end, char capture = -1)
{
AstNodePtr node = alternative(parsed_regex, pos, end);
2017-09-17 12:15:43 +02:00
if (pos == end or *pos != '|')
2017-09-19 09:56:21 +02:00
{
node->value = capture;
2017-09-17 12:15:43 +02:00
return node;
2017-09-19 09:56:21 +02:00
}
2017-09-17 12:15:43 +02:00
AstNodePtr res = make_ast_node(Op::Alternation);
res->children.push_back(std::move(node));
res->children.push_back(disjunction(parsed_regex, ++pos, end));
2017-09-19 09:56:21 +02:00
res->value = capture;
2017-09-17 12:15:43 +02:00
return res;
}
static AstNodePtr alternative(ParsedRegex& parsed_regex, Iterator& pos, Iterator end)
2017-09-17 12:15:43 +02:00
{
AstNodePtr res = make_ast_node(Op::Sequence);
while (auto node = term(parsed_regex, pos, end))
res->children.push_back(std::move(node));
2017-09-17 12:15:43 +02:00
return res;
}
static AstNodePtr term(ParsedRegex& parsed_regex, Iterator& pos, Iterator end)
2017-09-17 12:15:43 +02:00
{
if (auto node = assertion(parsed_regex, pos, end))
2017-09-17 12:15:43 +02:00
return node;
if (auto node = atom(parsed_regex, pos, end))
{
node->quantifier = quantifier(parsed_regex, pos, end);
2017-09-17 12:15:43 +02:00
return node;
}
2017-09-17 12:15:43 +02:00
return nullptr;
}
static AstNodePtr assertion(ParsedRegex& parsed_regex, Iterator& pos, Iterator end)
2017-09-17 12:15:43 +02:00
{
switch (*pos)
{
2017-09-17 12:15:43 +02:00
case '^': ++pos; return make_ast_node(Op::LineStart);
case '$': ++pos; return make_ast_node(Op::LineEnd);
case '\\':
if (pos+1 == end)
return nullptr;
switch (*(pos+1))
{
case 'b': pos += 2; return make_ast_node(Op::WordBoundary);
case 'B': pos += 2; return make_ast_node(Op::NotWordBoundary);
case '`': pos += 2; return make_ast_node(Op::SubjectBegin);
case '\'': pos += 2; return make_ast_node(Op::SubjectEnd);
}
break;
2017-09-19 04:57:02 +02:00
/* TODO: look ahead, look behind */
}
2017-09-17 12:15:43 +02:00
return nullptr;
}
static AstNodePtr atom(ParsedRegex& parsed_regex, Iterator& pos, Iterator end)
2017-09-17 12:15:43 +02:00
{
const auto c = *pos;
switch (c)
{
2017-09-17 12:15:43 +02:00
case '.': ++pos; return make_ast_node(Op::AnyChar);
case '(':
{
2017-09-17 12:15:43 +02:00
++pos;
auto content = disjunction(parsed_regex, pos, end, parsed_regex.capture_count++);
2017-09-19 09:56:21 +02:00
2017-09-17 12:15:43 +02:00
if (pos == end or *pos != ')')
throw runtime_error{"Unclosed parenthesis"};
++pos;
return content;
}
case '\\':
++pos;
return atom_escape(parsed_regex, pos, end);
case '[':
++pos;
return character_class(parsed_regex, pos, end);
2017-09-17 12:15:43 +02:00
default:
if (contains("^$.*+?()[]{}|", c))
return nullptr;
++pos;
return make_ast_node(Op::Literal, c);
}
2017-09-17 12:15:43 +02:00
}
static AstNodePtr atom_escape(ParsedRegex& parsed_regex, Iterator& pos, Iterator end)
{
const auto c = *pos;
struct { char name; char value; } control_escapes[] = {
{ 'f', '\f' }, { 'n', '\n' }, { 'r', '\r' }, { 't', '\t' }, { 'v', '\v' }
};
for (auto& control : control_escapes)
{
if (control.name == c)
return make_ast_node(Op::Literal, control.value);
}
// TOOD: \c..., \0..., '\0x...', \u...
if (contains("^$\\.*+?()[]{}|", c)) // SyntaxCharacter
return make_ast_node(Op::Literal, c);
throw runtime_error{"Unknown atom escape"};
}
static AstNodePtr character_class(ParsedRegex& parsed_regex, Iterator& pos, Iterator end)
{
const bool negative = pos != end and *pos == '^';
if (negative)
++pos;
Vector<CharRange> ranges;
while (pos != end and *pos != ']')
{
const auto c = *pos++;
if (c == '-')
{
ranges.push_back({ '-', 0 });
continue;
}
if (pos == end)
break;
CharRange range = { c, 0 };
if (*pos == '-')
{
if (++pos == end)
break;
range.max = *pos++;
if (range.min > range.max)
throw runtime_error{"Invalid range specified"};
}
ranges.push_back(range);
}
if (pos == end)
throw runtime_error{"Unclosed character class"};
++pos;
auto ranges_id = parsed_regex.ranges.size();
parsed_regex.ranges.push_back(std::move(ranges));
return make_ast_node(negative ? Op::NegativeCharRange : Op::CharRange, ranges_id);
}
static Quantifier quantifier(ParsedRegex& parsed_regex, Iterator& pos, Iterator end)
2017-09-17 12:15:43 +02:00
{
auto read_int = [](Iterator& pos, Iterator begin, Iterator end) {
int res = 0;
for (; pos != end; ++pos)
{
const auto c = *pos;
if (c < '0' or c > '9')
return pos == begin ? -1 : res;
res = res * 10 + c - '0';
}
return res;
};
2017-09-17 12:15:43 +02:00
switch (*pos)
{
case '*': ++pos; return {Quantifier::RepeatZeroOrMore};
case '+': ++pos; return {Quantifier::RepeatOneOrMore};
case '?': ++pos; return {Quantifier::Optional};
case '{':
{
auto it = pos+1;
int min = read_int(it, it, end);
int max = -1;
if (*it == ',')
{
++it;
max = read_int(it, it, end);
}
if (*it++ != '}')
throw runtime_error{"expected closing bracket"};
pos = it;
return {Quantifier::RepeatMinMax, min, max};
}
default: return {Quantifier::One};
}
2017-09-17 12:15:43 +02:00
}
};
CompiledRegex::Offset alloc_offset(CompiledRegex& program)
{
auto pos = program.bytecode.size();
program.bytecode.resize(pos + sizeof(CompiledRegex::Offset));
return pos;
}
2017-09-17 12:15:43 +02:00
CompiledRegex::Offset& get_offset(CompiledRegex& program, CompiledRegex::Offset pos)
{
return *reinterpret_cast<CompiledRegex::Offset*>(&program.bytecode[pos]);
}
2017-09-17 12:15:43 +02:00
CompiledRegex::Offset compile_node(CompiledRegex& program, const ParsedRegex& parsed_regex, const AstNodePtr& node);
CompiledRegex::Offset compile_node_inner(CompiledRegex& program, const ParsedRegex& parsed_regex, const AstNodePtr& node)
{
const auto start_pos = program.bytecode.size();
2017-09-19 09:56:21 +02:00
const char capture = (node->op == Op::Alternation or node->op == Op::Sequence) ? node->value : -1;
if (capture >= 0)
{
program.bytecode.push_back(CompiledRegex::Save);
program.bytecode.push_back(capture * 2);
2017-09-19 09:56:21 +02:00
}
Vector<CompiledRegex::Offset> goto_inner_end_offsets;
2017-09-17 12:15:43 +02:00
switch (node->op)
{
case Op::Literal:
program.bytecode.push_back(CompiledRegex::Literal);
program.bytecode.push_back(node->value);
2017-09-17 12:15:43 +02:00
break;
case Op::AnyChar:
program.bytecode.push_back(CompiledRegex::AnyChar);
2017-09-17 12:15:43 +02:00
break;
case Op::CharRange: case Op::NegativeCharRange:
{
auto& ranges = parsed_regex.ranges[node->value];
size_t single_count = std::count_if(ranges.begin(), ranges.end(),
[](auto& r) { return r.max == 0; });
program.bytecode.push_back(node->op == Op::CharRange ?
CompiledRegex::CharRange
: CompiledRegex::NegativeCharRange);
program.bytecode.push_back((char)single_count);
program.bytecode.push_back((char)(ranges.size() - single_count));
for (auto& r : ranges)
{
if (r.max == 0)
program.bytecode.push_back(r.min);
}
for (auto& r : ranges)
{
if (r.max != 0)
{
program.bytecode.push_back(r.min);
program.bytecode.push_back(r.max);
}
}
break;
}
2017-09-17 12:15:43 +02:00
case Op::Sequence:
for (auto& child : node->children)
compile_node(program, parsed_regex, child);
2017-09-17 12:15:43 +02:00
break;
case Op::Alternation:
{
auto& children = node->children;
kak_assert(children.size() == 2);
2017-09-17 12:15:43 +02:00
program.bytecode.push_back(CompiledRegex::Split_PrioritizeParent);
auto offset = alloc_offset(program);
compile_node(program, parsed_regex, children[0]);
program.bytecode.push_back(CompiledRegex::Jump);
goto_inner_end_offsets.push_back(alloc_offset(program));
auto right_pos = compile_node(program, parsed_regex, children[1]);
get_offset(program, offset) = right_pos;
2017-09-17 12:15:43 +02:00
break;
}
2017-09-17 12:15:43 +02:00
case Op::LineStart:
program.bytecode.push_back(CompiledRegex::LineStart);
2017-09-17 12:15:43 +02:00
break;
case Op::LineEnd:
program.bytecode.push_back(CompiledRegex::LineEnd);
2017-09-17 12:15:43 +02:00
break;
case Op::WordBoundary:
program.bytecode.push_back(CompiledRegex::WordBoundary);
break;
case Op::NotWordBoundary:
program.bytecode.push_back(CompiledRegex::NotWordBoundary);
break;
case Op::SubjectBegin:
program.bytecode.push_back(CompiledRegex::SubjectBegin);
break;
case Op::SubjectEnd:
program.bytecode.push_back(CompiledRegex::SubjectEnd);
break;
2017-09-17 12:15:43 +02:00
}
for (auto& offset : goto_inner_end_offsets)
get_offset(program, offset) = program.bytecode.size();
2017-09-19 09:56:21 +02:00
if (capture >= 0)
{
program.bytecode.push_back(CompiledRegex::Save);
program.bytecode.push_back(capture * 2 + 1);
2017-09-19 09:56:21 +02:00
}
return start_pos;
}
CompiledRegex::Offset compile_node(CompiledRegex& program, const ParsedRegex& parsed_regex, const AstNodePtr& node)
{
CompiledRegex::Offset pos = program.bytecode.size();
Vector<CompiledRegex::Offset> goto_end_offsets;
if (node->quantifier.allows_none())
{
program.bytecode.push_back(CompiledRegex::Split_PrioritizeParent);
goto_end_offsets.push_back(alloc_offset(program));
}
auto inner_pos = compile_node_inner(program, parsed_regex, node);
// Write the node multiple times when we have a min count quantifier
for (int i = 1; i < node->quantifier.min; ++i)
inner_pos = compile_node_inner(program, parsed_regex, node);
if (node->quantifier.allows_infinite_repeat())
2017-09-17 12:15:43 +02:00
{
program.bytecode.push_back(CompiledRegex::Split_PrioritizeChild);
get_offset(program, alloc_offset(program)) = inner_pos;
}
// Write the node as an optional match for the min -> max counts
else for (int i = std::max(1, node->quantifier.min); // STILL UGLY !
i < node->quantifier.max; ++i)
{
program.bytecode.push_back(CompiledRegex::Split_PrioritizeParent);
goto_end_offsets.push_back(alloc_offset(program));
compile_node_inner(program, parsed_regex, node);
2017-09-17 12:15:43 +02:00
}
for (auto offset : goto_end_offsets)
get_offset(program, offset) = program.bytecode.size();
2017-09-17 12:15:43 +02:00
return pos;
}
constexpr CompiledRegex::Offset prefix_size = 3 + 2 * sizeof(CompiledRegex::Offset);
// Add a '.*' as the first instructions for the search use case
void write_search_prefix(CompiledRegex& program)
{
kak_assert(program.bytecode.empty());
program.bytecode.push_back(CompiledRegex::Split_PrioritizeChild);
get_offset(program, alloc_offset(program)) = prefix_size;
program.bytecode.push_back(CompiledRegex::AnyChar);
program.bytecode.push_back(CompiledRegex::Split_PrioritizeParent);
get_offset(program, alloc_offset(program)) = 1 + sizeof(CompiledRegex::Offset);
}
CompiledRegex compile(const ParsedRegex& parsed_regex)
2017-09-17 12:15:43 +02:00
{
CompiledRegex res;
write_search_prefix(res);
compile_node(res, parsed_regex, parsed_regex.ast);
res.bytecode.push_back(CompiledRegex::Match);
res.save_count = parsed_regex.capture_count * 2;
2017-09-17 12:15:43 +02:00
return res;
}
template<typename Iterator>
CompiledRegex compile(Iterator begin, Iterator end)
2017-09-17 12:15:43 +02:00
{
return compile(Parser<Iterator>::parse(begin, end));
2017-09-17 12:15:43 +02:00
}
}
void dump(const CompiledRegex& program)
{
for (auto pos = program.bytecode.begin(); pos < program.bytecode.end(); )
{
printf("%4zd ", pos - program.bytecode.begin());
const auto op = (CompiledRegex::Op)*pos++;
switch (op)
{
case CompiledRegex::Literal:
printf("literal %c\n", *pos++);
break;
case CompiledRegex::AnyChar:
printf("any char\n");
break;
case CompiledRegex::Jump:
printf("jump %u\n", *reinterpret_cast<const CompiledRegex::Offset*>(&*pos));
pos += sizeof(CompiledRegex::Offset);
break;
case CompiledRegex::Split_PrioritizeParent:
case CompiledRegex::Split_PrioritizeChild:
{
printf("split (prioritize %s) %u\n",
op == CompiledRegex::Split_PrioritizeParent ? "parent" : "child",
*reinterpret_cast<const CompiledRegex::Offset*>(&*pos));
pos += sizeof(CompiledRegex::Offset);
break;
}
case CompiledRegex::Save:
printf("save %d\n", *pos++);
2017-09-19 09:56:21 +02:00
break;
case CompiledRegex::CharRange: case CompiledRegex::NegativeCharRange:
{
printf("%schar range, [", op == CompiledRegex::NegativeCharRange ? "negative " : "");
auto single_count = *pos++;
auto range_count = *pos++;
for (int i = 0; i < single_count; ++i)
printf("%c", *pos++);
printf("]");
for (int i = 0; i < range_count; ++i)
{
auto min = *pos++;
auto max = *pos++;
printf(" [%c-%c]", min, max);
}
printf("\n");
break;
}
case CompiledRegex::LineStart:
printf("line start\n");
break;
case CompiledRegex::LineEnd:
printf("line end\n");
break;
case CompiledRegex::WordBoundary:
printf("word boundary\n");
break;
case CompiledRegex::NotWordBoundary:
printf("not word boundary\n");
break;
case CompiledRegex::SubjectBegin:
printf("subject begin\n");
break;
case CompiledRegex::SubjectEnd:
printf("subject end\n");
break;
case CompiledRegex::Match:
printf("match\n");
}
}
}
struct ThreadedRegexVM
{
ThreadedRegexVM(const CompiledRegex& program) : m_program{program} {}
2017-09-19 09:56:21 +02:00
struct Thread
{
2017-09-19 09:56:21 +02:00
const char* inst;
Vector<const char*> saves = {};
};
2017-09-19 09:56:21 +02:00
enum class StepResult { Consumed, Matched, Failed };
StepResult step(size_t thread_index)
{
while (true)
{
2017-09-19 09:56:21 +02:00
auto& thread = m_threads[thread_index];
char c = m_pos == m_subject.end() ? 0 : *m_pos;
const CompiledRegex::Op op = (CompiledRegex::Op)*thread.inst++;
switch (op)
{
case CompiledRegex::Literal:
2017-09-19 09:56:21 +02:00
if (*thread.inst++ == c)
return StepResult::Consumed;
return StepResult::Failed;
case CompiledRegex::AnyChar:
2017-09-19 09:56:21 +02:00
return StepResult::Consumed;
case CompiledRegex::Jump:
2017-09-19 09:56:21 +02:00
{
auto inst = m_program.bytecode.data() + *reinterpret_cast<const CompiledRegex::Offset*>(thread.inst);
// if instruction is already going to be executed by another thread, drop this thread
2017-09-19 09:56:21 +02:00
if (std::find_if(m_threads.begin(), m_threads.end(),
[inst](const Thread& t) { return t.inst == inst; }) != m_threads.end())
return StepResult::Failed;
thread.inst = inst;
break;
2017-09-19 09:56:21 +02:00
}
case CompiledRegex::Split_PrioritizeParent:
{
add_thread(thread_index+1, *reinterpret_cast<const CompiledRegex::Offset*>(thread.inst), thread.saves);
2017-09-19 09:56:21 +02:00
// thread is invalidated now, as we mutated the m_thread vector
m_threads[thread_index].inst += sizeof(CompiledRegex::Offset);
2017-09-19 09:56:21 +02:00
break;
}
case CompiledRegex::Split_PrioritizeChild:
{
auto prog_start = m_program.bytecode.data();
add_thread(thread_index+1, thread.inst + sizeof(CompiledRegex::Offset) - prog_start, thread.saves);
// thread is invalidated now, as we mutated the m_thread vector
m_threads[thread_index].inst = prog_start + *reinterpret_cast<const CompiledRegex::Offset*>(m_threads[thread_index].inst);
break;
}
case CompiledRegex::Save:
2017-09-19 09:56:21 +02:00
{
const char index = *thread.inst++;
thread.saves[index] = m_pos;
break;
}
case CompiledRegex::CharRange: case CompiledRegex::NegativeCharRange:
{
auto single_count = *thread.inst++;
auto range_count = *thread.inst++;
const char* end = thread.inst + single_count + 2 * range_count;
for (int i = 0; i < single_count; ++i)
{
auto candidate = *thread.inst++;
if (c == candidate)
{
thread.inst = end;
return op == CompiledRegex::CharRange ? StepResult::Consumed : StepResult::Failed;
}
}
for (int i = 0; i < range_count; ++i)
{
auto min = *thread.inst++;
auto max = *thread.inst++;
if (min <= c and c <= max)
{
thread.inst = end;
return op == CompiledRegex::CharRange ? StepResult::Consumed : StepResult::Failed;
}
}
kak_assert(thread.inst == end);
return op == CompiledRegex::CharRange ? StepResult::Failed : StepResult::Consumed;
}
case CompiledRegex::LineStart:
if (not is_line_start())
2017-09-19 09:56:21 +02:00
return StepResult::Failed;
break;
case CompiledRegex::LineEnd:
if (not is_line_end())
2017-09-19 09:56:21 +02:00
return StepResult::Failed;
break;
case CompiledRegex::WordBoundary:
if (not is_word_boundary())
2017-09-19 09:56:21 +02:00
return StepResult::Failed;
break;
case CompiledRegex::NotWordBoundary:
if (is_word_boundary())
2017-09-19 09:56:21 +02:00
return StepResult::Failed;
break;
case CompiledRegex::SubjectBegin:
if (m_pos != m_subject.begin())
2017-09-19 09:56:21 +02:00
return StepResult::Failed;
break;
case CompiledRegex::SubjectEnd:
if (m_pos != m_subject.end())
2017-09-19 09:56:21 +02:00
return StepResult::Failed;
break;
case CompiledRegex::Match:
thread.inst = nullptr;
2017-09-19 09:56:21 +02:00
return StepResult::Matched;
}
}
2017-09-19 09:56:21 +02:00
return StepResult::Failed;
2017-09-17 12:15:43 +02:00
}
bool exec(StringView data, bool match = true, bool longest = false)
{
bool found_match = false;
2017-09-19 09:56:21 +02:00
m_threads.clear();
add_thread(0, match ? RegexCompiler::prefix_size : 0,
Vector<const char*>(m_program.save_count, nullptr));
2017-09-19 09:56:21 +02:00
m_subject = data;
m_pos = data.begin();
for (m_pos = m_subject.begin(); m_pos != m_subject.end(); ++m_pos)
{
for (int i = 0; i < m_threads.size(); ++i)
{
2017-09-19 09:56:21 +02:00
const auto res = step(i);
if (res == StepResult::Matched)
{
m_captures = std::move(m_threads[i].saves);
found_match = true;
m_threads.resize(i); // remove this and lower priority threads
if (not longest)
return true;
2017-09-19 09:56:21 +02:00
}
else if (res == StepResult::Failed)
m_threads[i].inst = nullptr;
}
2017-09-19 09:56:21 +02:00
m_threads.erase(std::remove_if(m_threads.begin(), m_threads.end(),
[](const Thread& t) { return t.inst == nullptr; }), m_threads.end());
if (m_threads.empty())
2017-09-19 09:56:21 +02:00
return false;
}
// Step remaining threads to see if they match without consuming anything else
for (int i = 0; i < m_threads.size(); ++i)
{
2017-09-19 09:56:21 +02:00
if (step(i) == StepResult::Matched)
{
m_captures = std::move(m_threads[i].saves);
found_match = true;
m_threads.resize(i); // remove this and lower priority threads
if (not longest)
return true;
2017-09-19 09:56:21 +02:00
}
}
return found_match;
}
void add_thread(int index, CompiledRegex::Offset pos, Vector<const char*> saves)
{
const char* inst = m_program.bytecode.data() + pos;
2017-09-19 09:56:21 +02:00
if (std::find_if(m_threads.begin(), m_threads.end(),
[inst](const Thread& t) { return t.inst == inst; }) == m_threads.end())
m_threads.insert(m_threads.begin() + index, {inst, std::move(saves)});
}
bool is_line_start() const
{
return m_pos == m_subject.begin() or *(m_pos-1) == '\n';
}
bool is_line_end() const
{
return m_pos == m_subject.end() or *m_pos == '\n';
}
bool is_word_boundary() const
{
return m_pos == m_subject.begin() or
m_pos == m_subject.end() or
is_word(*(m_pos-1)) != is_word(*m_pos);
}
const CompiledRegex& m_program;
2017-09-19 09:56:21 +02:00
Vector<Thread> m_threads;
StringView m_subject;
const char* m_pos;
Vector<const char*> m_captures;
};
auto test_regex = UnitTest{[]{
2017-09-17 12:15:43 +02:00
{
StringView re = R"(a*b)";
2017-09-17 12:15:43 +02:00
auto program = RegexCompiler::compile(re.begin(), re.end());
dump(program);
ThreadedRegexVM vm{program};
kak_assert(vm.exec("b"));
kak_assert(vm.exec("ab"));
kak_assert(vm.exec("aaab"));
kak_assert(not vm.exec("acb"));
kak_assert(not vm.exec(""));
2017-09-17 12:15:43 +02:00
}
{
StringView re = R"(^a.*b$)";
auto program = RegexCompiler::compile(re.begin(), re.end());
dump(program);
ThreadedRegexVM vm{program};
kak_assert(vm.exec("afoob"));
kak_assert(vm.exec("ab"));
kak_assert(not vm.exec("bab"));
kak_assert(not vm.exec(""));
}
2017-09-17 12:15:43 +02:00
{
StringView re = R"(^(foo|qux|baz)+(bar)?baz$)";
2017-09-17 12:15:43 +02:00
auto program = RegexCompiler::compile(re.begin(), re.end());
dump(program);
ThreadedRegexVM vm{program};
kak_assert(vm.exec("fooquxbarbaz"));
kak_assert(StringView{vm.m_captures[2], vm.m_captures[3]} == "qux");
kak_assert(not vm.exec("fooquxbarbaze"));
kak_assert(not vm.exec("quxbar"));
kak_assert(not vm.exec("blahblah"));
kak_assert(vm.exec("bazbaz"));
kak_assert(vm.exec("quxbaz"));
2017-09-17 12:15:43 +02:00
}
{
StringView re = R"(.*\b(foo|bar)\b.*)";
auto program = RegexCompiler::compile(re.begin(), re.end());
dump(program);
ThreadedRegexVM vm{program};
kak_assert(vm.exec("qux foo baz"));
kak_assert(StringView{vm.m_captures[2], vm.m_captures[3]} == "foo");
kak_assert(not vm.exec("quxfoobaz"));
kak_assert(vm.exec("bar"));
kak_assert(not vm.exec("foobar"));
}
{
StringView re = R"(\`(foo|bar)\')";
auto program = RegexCompiler::compile(re.begin(), re.end());
dump(program);
ThreadedRegexVM vm{program};
kak_assert(vm.exec("foo"));
kak_assert(vm.exec("bar"));
kak_assert(not vm.exec("foobar"));
}
{
StringView re = R"(\`a{3,5}b\')";
auto program = RegexCompiler::compile(re.begin(), re.end());
dump(program);
ThreadedRegexVM vm{program};
kak_assert(not vm.exec("aab"));
kak_assert(vm.exec("aaab"));
kak_assert(not vm.exec("aaaaaab"));
kak_assert(vm.exec("aaaaab"));
}
{
StringView re = R"(\`a{3,}b\')";
auto program = RegexCompiler::compile(re.begin(), re.end());
dump(program);
ThreadedRegexVM vm{program};
kak_assert(not vm.exec("aab"));
kak_assert(vm.exec("aaab"));
kak_assert(vm.exec("aaaaab"));
}
{
StringView re = R"(\`a{,3}b\')";
auto program = RegexCompiler::compile(re.begin(), re.end());
dump(program);
ThreadedRegexVM vm{program};
kak_assert(vm.exec("b"));
kak_assert(vm.exec("ab"));
kak_assert(vm.exec("aaab"));
kak_assert(not vm.exec("aaaab"));
}
{
StringView re = R"(f.*a(.*o))";
auto program = RegexCompiler::compile(re.begin(), re.end());
dump(program);
ThreadedRegexVM vm{program};
kak_assert(vm.exec("blahfoobarfoobaz", false, true));
kak_assert(StringView{vm.m_captures[0], vm.m_captures[1]} == "foobarfoo");
kak_assert(StringView{vm.m_captures[2], vm.m_captures[3]} == "rfoo");
kak_assert(vm.exec("mais que fais la police", false, true));
kak_assert(StringView{vm.m_captures[0], vm.m_captures[1]} == "fais la po");
kak_assert(StringView{vm.m_captures[2], vm.m_captures[3]} == " po");
}
{
StringView re = R"([ab-dX-Z]{3,5})";
auto program = RegexCompiler::compile(re.begin(), re.end());
dump(program);
ThreadedRegexVM vm{program};
kak_assert(vm.exec("acY"));
kak_assert(not vm.exec("aeY"));
kak_assert(vm.exec("abcdX"));
kak_assert(not vm.exec("efg"));
}
}};
}