fix typo
This commit is contained in:
parent
47be859ef7
commit
e3662a5aea
|
@ -108,7 +108,7 @@ Now we can solve $(S-\lambda I_2) \hat v = 0$ for $\lambda_0$ and $\lambda_1$, a
|
|||
|
||||
$$ \hat v_0 = \begin{bmatrix} -2 \\ \sqrt 5 - 1 \end{bmatrix},\; \hat v_1 = \begin{bmatrix} 2 \\ \sqrt 5 + 1 \end{bmatrix} $$
|
||||
|
||||
These vectors are indeed linearly dependent, and we can use them as basis vectors for our diagonal matrix. We will now to write $S = BDB^{-1}$ where
|
||||
These vectors are indeed linearly independent, and we can use them as basis vectors for our diagonal matrix. We will now to write $S = BDB^{-1}$ where
|
||||
$$ B = \begin{bmatrix} -2 & 2 \\ \sqrt 5 - 1 & \sqrt 5 + 1 \end{bmatrix}$$
|
||||
$$ D = \begin{bmatrix} \frac{1 - \sqrt 5}{2} & 0 \\ 0 & \frac{1 + \sqrt 5}{2} \end{bmatrix}$$
|
||||
|
||||
|
|
Loading…
Reference in New Issue
Block a user