This commit is contained in:
Rachel Lambda Samuelsson 2023-08-02 18:57:04 +02:00
parent 47be859ef7
commit e3662a5aea

View File

@ -108,7 +108,7 @@ Now we can solve $(S-\lambda I_2) \hat v = 0$ for $\lambda_0$ and $\lambda_1$, a
$$ \hat v_0 = \begin{bmatrix} -2 \\ \sqrt 5 - 1 \end{bmatrix},\; \hat v_1 = \begin{bmatrix} 2 \\ \sqrt 5 + 1 \end{bmatrix} $$
These vectors are indeed linearly dependent, and we can use them as basis vectors for our diagonal matrix. We will now to write $S = BDB^{-1}$ where
These vectors are indeed linearly independent, and we can use them as basis vectors for our diagonal matrix. We will now to write $S = BDB^{-1}$ where
$$ B = \begin{bmatrix} -2 & 2 \\ \sqrt 5 - 1 & \sqrt 5 + 1 \end{bmatrix}$$
$$ D = \begin{bmatrix} \frac{1 - \sqrt 5}{2} & 0 \\ 0 & \frac{1 + \sqrt 5}{2} \end{bmatrix}$$