additional work on inductives, code compiles, inductives unusable
This commit is contained in:
parent
b53a575821
commit
bd8cb07309
4
TODO.md
4
TODO.md
|
@ -1,5 +1,3 @@
|
|||
# Inductives
|
||||
|
||||
figure out model for terms, current one is nice but makes values incredibly inconvenient.
|
||||
|
||||
Update rest of code to fit new terms, or remodel terms again with a global environment of inductive definitions, rather than introducing them in the terms. With this one could also index values by this inductive environment.
|
||||
* Add support for them in type checking, conversion, etc
|
||||
|
|
|
@ -18,7 +18,7 @@ import Convert
|
|||
mutual
|
||||
public export
|
||||
-- terms types expected term
|
||||
check : Ctx n -> Ctx n -> Value -> Term n -> PI Bool
|
||||
check : Ctx n v -> Ctx n v -> Value v -> Term n v -> PI Bool
|
||||
check trs tys xpt' tr = do
|
||||
xpt <- whnf xpt'
|
||||
case tr of
|
||||
|
@ -40,8 +40,8 @@ mutual
|
|||
_ => convert xpt =<< infer trs tys tr
|
||||
|
||||
-- terms types term
|
||||
infer : Ctx n -> Ctx n -> Term n -> PI Value
|
||||
infer trs tys (TVar i _) = pure (index (natToFinLT i) tys)
|
||||
infer : Ctx n v -> Ctx n v -> Term n v -> PI (Value v)
|
||||
infer trs tys (TVar i) = pure (index i tys)
|
||||
infer trs tys TType = pure VType
|
||||
infer trs tys (TApp f x) = infer trs tys f >>= whnf >>=
|
||||
\case
|
||||
|
@ -54,6 +54,6 @@ mutual
|
|||
infer trs tys _ = oops "cannot infer type"
|
||||
|
||||
public export
|
||||
typecheck : Term 0 -> Term 0 -> Either String (Bool, List String)
|
||||
typecheck : Term 0 [] -> Term 0 [] -> Either String (Bool, List String)
|
||||
typecheck tr ty = resolve $ (&&) <$> check [] [] VType ty
|
||||
<*> delay <$> check [] [] (VClos [] ty) tr
|
||||
|
|
|
@ -15,7 +15,7 @@ import Data.Vect
|
|||
%default total
|
||||
|
||||
public export
|
||||
convert : Value -> Value -> PI Bool
|
||||
convert : Value v -> Value v -> PI Bool
|
||||
convert u1 u2 = do
|
||||
u1' <- whnf u1
|
||||
u2' <- whnf u2
|
||||
|
|
23
src/Inductive.idr
Normal file
23
src/Inductive.idr
Normal file
|
@ -0,0 +1,23 @@
|
|||
module Inductive
|
||||
|
||||
import Data.Vect
|
||||
|
||||
import Term
|
||||
|
||||
{-
|
||||
The type of a constructor, indexed like terms
|
||||
-}
|
||||
public export
|
||||
data Constructor : (ctx : Index) -> (tags : Vect n Nat) -> Type where
|
||||
Tr : Term n v -> Constructor n v -- a term
|
||||
Sum : Constructor n v -> Constructor (S n) v -> Constructor n v -- Σ _ : #0 , #1
|
||||
|
||||
|
||||
{-
|
||||
The type of an inductive definition. It is a vector of constructors.
|
||||
's indexed by the number of constructors as well as the indecies for terms.
|
||||
-}
|
||||
public export
|
||||
Inductive : Nat -> Index -> Vect n Nat -> Type
|
||||
Inductive cons ctx tags = Vect cons (Constructor ctx (cons :: tags))
|
||||
|
|
@ -15,13 +15,13 @@ import Data.Vect
|
|||
|
||||
mutual
|
||||
public export
|
||||
app : Value -> Value -> PI Value
|
||||
app : Value v -> Value v -> PI (Value v)
|
||||
app (VClos env (TLam sc)) x = eval (x :: env) sc
|
||||
app f x = pure (VApp f x)
|
||||
|
||||
public export
|
||||
eval : Ctx n -> Term n -> PI Value
|
||||
eval env (TVar i _) = pure (index (natToFinLT i) env)
|
||||
eval : Ctx n v -> Term n v -> PI (Value v)
|
||||
eval env (TVar i) = pure (index i env)
|
||||
eval env (TApp f x) = do
|
||||
f' <- eval env f
|
||||
x' <- eval env x
|
||||
|
@ -30,7 +30,7 @@ mutual
|
|||
eval env tr = pure (VClos env tr)
|
||||
|
||||
public export
|
||||
whnf : Value -> PI Value
|
||||
whnf : Value v -> PI (Value v)
|
||||
whnf (VApp f x) = do
|
||||
f' <- whnf f
|
||||
x' <- whnf x
|
||||
|
|
19
src/Term.idr
19
src/Term.idr
|
@ -28,29 +28,11 @@ mutual
|
|||
TApp : Term n v -> Term n v -> Term n v -- Appliction
|
||||
TVar : Fin n -> Term n v -- Variable
|
||||
TLet : Term n v -> Term n v -> Term (S n) v -> Term n v -- Let (let _ = #1 : #0 in #2)
|
||||
TIDef : Inductive m n v -> Term n (m :: v) -> Term n v -- Inductive definition
|
||||
TIType : Fin (len v) -> Term n v -- Inductive type
|
||||
TIElim : Fin (len v) -> Term n v -- Inductive eliminator
|
||||
TICons : (n : Fin (len v)) -> Fin (index n v) -> Term m v -- Inductive constructor
|
||||
|
||||
|
||||
{-
|
||||
The type of a constructor, indexed like terms
|
||||
-}
|
||||
public export
|
||||
data Constructor : (ctx : Index) -> (tags : Vect n Nat) -> Type where
|
||||
Tr : Term n v -> Constructor n v -- a term
|
||||
Sum : Constructor n v -> Constructor (S n) v -> Constructor n v -- Σ _ : #0 , #1
|
||||
|
||||
|
||||
{-
|
||||
The type of an inductive definition. It is a vector of constructors.
|
||||
It's indexed by the number of constructors as well as the indecies for terms.
|
||||
-}
|
||||
public export
|
||||
Inductive : Nat -> Index -> Vect n Nat -> Type
|
||||
Inductive cons ctx tags = Vect cons (Constructor ctx (cons :: tags))
|
||||
|
||||
{-
|
||||
Use some different brackets to make it easier to read
|
||||
-}
|
||||
|
@ -62,7 +44,6 @@ Show (Term n v) where
|
|||
show (TApp f x) = "App (" ++ show f ++ ") (" ++ show x ++ ")"
|
||||
show (TVar i) = "Var " ++ show i
|
||||
show (TLet tr ty sc) = "Let <" ++ show tr ++ "> : <" ++ show ty ++ "> in <" ++ show sc ++ ">"
|
||||
show (TIDef _ t) = "IDef [...] in " ++ show t
|
||||
show (TIType n) = "IType[#" ++ show n ++ "]"
|
||||
show (TIElim n) = "IElim[#" ++ show n ++ "]"
|
||||
show (TICons n m) = "ICons[#" ++ show n ++ "][#" ++ show m ++ "]"
|
||||
|
|
|
@ -12,31 +12,36 @@ import Control.Monad.Identity
|
|||
import Control.Monad.Either
|
||||
|
||||
import Data.Nat
|
||||
import Data.Fin
|
||||
import Data.Vect
|
||||
|
||||
%default total
|
||||
|
||||
a : {p, q : Nat} -> lt p q = True -> LT p q
|
||||
a {p} {q} eq = ltReflectsLT p q eq
|
||||
|
||||
{- λA. λx. x : ∏ (A : Type) → A → A -}
|
||||
test_id : Either String (Bool, List String)
|
||||
test_id = typecheck (TLam (TLam (TVar 0 (a Refl))))
|
||||
(TPi TType (TPi (TVar 0 (a Refl)) (TVar 1 (a Refl))))
|
||||
test_id = typecheck (TLam (TLam (TVar 0)))
|
||||
(TPi TType (TPi (TVar 0) (TVar 1)))
|
||||
|
||||
{- λA. λB. λf. λx. f x : ∏ (A : Type) ∏ (B : A → Type) ∏ (f : ∏ (x : A) B x) ∏ (x : A) B x -}
|
||||
test_app : Either String (Bool, List String)
|
||||
test_app = typecheck (TLam (TLam (TLam (TLam (TApp (TVar 1 (a Refl)) (TVar 0 (a Refl)))))))
|
||||
test_app = typecheck (TLam (TLam (TLam (TLam (TApp (TVar 1) (TVar 0))))))
|
||||
(TPi TType
|
||||
(TPi (TPi (TVar 0 (a Refl)) TType)
|
||||
(TPi (TPi (TVar 1 (a Refl)) (TApp (TVar 1 (a Refl)) (TVar 0 (a Refl))))
|
||||
(TPi (TVar 2 (a Refl)) (TApp (TVar 2 (a Refl)) (TVar 0 (a Refl)))))))
|
||||
(TPi (TPi (TVar 0) TType)
|
||||
(TPi (TPi (TVar 1) (TApp (TVar 1) (TVar 0)))
|
||||
(TPi (TVar 2) (TApp (TVar 2) (TVar 0))))))
|
||||
|
||||
{- λf. λx. f x ≃ λf. λx. (λy. f y) x -}
|
||||
eta_test : Either String (Bool, List String)
|
||||
eta_test = resolve action
|
||||
where
|
||||
term1 : Term 0 []
|
||||
term1 = TLam (TLam (TApp (TVar 1) (TVar 0)))
|
||||
|
||||
term2 : Term 0 []
|
||||
term2 = TLam (TLam (TApp (TLam (TApp (TVar 2) (TVar 0))) (TVar 0)))
|
||||
|
||||
action : PI Bool
|
||||
action = do
|
||||
x <- eval ctx0 (TLam (TLam (TApp (TVar 1 (a Refl)) (TVar 0 (a Refl)))))
|
||||
y <- eval ctx0 (TLam (TLam (TApp (TLam (TApp (TVar 2 (a Refl)) (TVar 0 (a Refl)))) (TVar 0 (a Refl)))))
|
||||
x <- eval ctx0 term1
|
||||
y <- eval ctx0 term2
|
||||
convert x y
|
||||
|
|
|
@ -9,22 +9,22 @@ import Data.Vect
|
|||
|
||||
mutual
|
||||
public export
|
||||
data Value : Type where
|
||||
VType : Value
|
||||
VGen : Nat -> Value
|
||||
VApp : Value -> Value -> Value
|
||||
VClos : Ctx n -> Term n -> Value
|
||||
data Value : (tags : Vect n Nat) -> Type where
|
||||
VType : Value v
|
||||
VGen : Nat -> Value v
|
||||
VApp : Value v -> Value v -> Value v
|
||||
VClos : Ctx n v -> Term n v -> Value v
|
||||
|
||||
public export
|
||||
Ctx : Index -> Type
|
||||
Ctx i = Vect i Value
|
||||
Ctx : Index -> Vect n Nat -> Type
|
||||
Ctx i v = Vect i (Value v)
|
||||
|
||||
public export
|
||||
ctx0 : Ctx 0
|
||||
ctx0 : Ctx 0 v
|
||||
ctx0 = []
|
||||
|
||||
public export
|
||||
Show Value where
|
||||
Show (Value v) where
|
||||
show VType = "VType"
|
||||
show (VGen i) = "VGen " ++ show i
|
||||
show (VApp f x) = "VApp (" ++ show f ++ ") (" ++ show x ++ ")"
|
||||
|
|
Loading…
Reference in New Issue
Block a user