additional work on inductives, code compiles, inductives unusable

This commit is contained in:
Rachel Lambda Samuelsson 2022-06-08 15:11:55 +02:00
parent b53a575821
commit bd8cb07309
8 changed files with 58 additions and 51 deletions

View File

@ -1,5 +1,3 @@
# Inductives
figure out model for terms, current one is nice but makes values incredibly inconvenient.
Update rest of code to fit new terms, or remodel terms again with a global environment of inductive definitions, rather than introducing them in the terms. With this one could also index values by this inductive environment.
* Add support for them in type checking, conversion, etc

View File

@ -18,7 +18,7 @@ import Convert
mutual
public export
-- terms types expected term
check : Ctx n -> Ctx n -> Value -> Term n -> PI Bool
check : Ctx n v -> Ctx n v -> Value v -> Term n v -> PI Bool
check trs tys xpt' tr = do
xpt <- whnf xpt'
case tr of
@ -40,8 +40,8 @@ mutual
_ => convert xpt =<< infer trs tys tr
-- terms types term
infer : Ctx n -> Ctx n -> Term n -> PI Value
infer trs tys (TVar i _) = pure (index (natToFinLT i) tys)
infer : Ctx n v -> Ctx n v -> Term n v -> PI (Value v)
infer trs tys (TVar i) = pure (index i tys)
infer trs tys TType = pure VType
infer trs tys (TApp f x) = infer trs tys f >>= whnf >>=
\case
@ -54,6 +54,6 @@ mutual
infer trs tys _ = oops "cannot infer type"
public export
typecheck : Term 0 -> Term 0 -> Either String (Bool, List String)
typecheck : Term 0 [] -> Term 0 [] -> Either String (Bool, List String)
typecheck tr ty = resolve $ (&&) <$> check [] [] VType ty
<*> delay <$> check [] [] (VClos [] ty) tr

View File

@ -15,7 +15,7 @@ import Data.Vect
%default total
public export
convert : Value -> Value -> PI Bool
convert : Value v -> Value v -> PI Bool
convert u1 u2 = do
u1' <- whnf u1
u2' <- whnf u2

23
src/Inductive.idr Normal file
View File

@ -0,0 +1,23 @@
module Inductive
import Data.Vect
import Term
{-
The type of a constructor, indexed like terms
-}
public export
data Constructor : (ctx : Index) -> (tags : Vect n Nat) -> Type where
Tr : Term n v -> Constructor n v -- a term
Sum : Constructor n v -> Constructor (S n) v -> Constructor n v -- Σ _ : #0 , #1
{-
The type of an inductive definition. It is a vector of constructors.
's indexed by the number of constructors as well as the indecies for terms.
-}
public export
Inductive : Nat -> Index -> Vect n Nat -> Type
Inductive cons ctx tags = Vect cons (Constructor ctx (cons :: tags))

View File

@ -15,13 +15,13 @@ import Data.Vect
mutual
public export
app : Value -> Value -> PI Value
app : Value v -> Value v -> PI (Value v)
app (VClos env (TLam sc)) x = eval (x :: env) sc
app f x = pure (VApp f x)
public export
eval : Ctx n -> Term n -> PI Value
eval env (TVar i _) = pure (index (natToFinLT i) env)
eval : Ctx n v -> Term n v -> PI (Value v)
eval env (TVar i) = pure (index i env)
eval env (TApp f x) = do
f' <- eval env f
x' <- eval env x
@ -30,7 +30,7 @@ mutual
eval env tr = pure (VClos env tr)
public export
whnf : Value -> PI Value
whnf : Value v -> PI (Value v)
whnf (VApp f x) = do
f' <- whnf f
x' <- whnf x

View File

@ -28,29 +28,11 @@ mutual
TApp : Term n v -> Term n v -> Term n v -- Appliction
TVar : Fin n -> Term n v -- Variable
TLet : Term n v -> Term n v -> Term (S n) v -> Term n v -- Let (let _ = #1 : #0 in #2)
TIDef : Inductive m n v -> Term n (m :: v) -> Term n v -- Inductive definition
TIType : Fin (len v) -> Term n v -- Inductive type
TIElim : Fin (len v) -> Term n v -- Inductive eliminator
TICons : (n : Fin (len v)) -> Fin (index n v) -> Term m v -- Inductive constructor
{-
The type of a constructor, indexed like terms
-}
public export
data Constructor : (ctx : Index) -> (tags : Vect n Nat) -> Type where
Tr : Term n v -> Constructor n v -- a term
Sum : Constructor n v -> Constructor (S n) v -> Constructor n v -- Σ _ : #0 , #1
{-
The type of an inductive definition. It is a vector of constructors.
It's indexed by the number of constructors as well as the indecies for terms.
-}
public export
Inductive : Nat -> Index -> Vect n Nat -> Type
Inductive cons ctx tags = Vect cons (Constructor ctx (cons :: tags))
{-
Use some different brackets to make it easier to read
-}
@ -62,7 +44,6 @@ Show (Term n v) where
show (TApp f x) = "App (" ++ show f ++ ") (" ++ show x ++ ")"
show (TVar i) = "Var " ++ show i
show (TLet tr ty sc) = "Let <" ++ show tr ++ "> : <" ++ show ty ++ "> in <" ++ show sc ++ ">"
show (TIDef _ t) = "IDef [...] in " ++ show t
show (TIType n) = "IType[#" ++ show n ++ "]"
show (TIElim n) = "IElim[#" ++ show n ++ "]"
show (TICons n m) = "ICons[#" ++ show n ++ "][#" ++ show m ++ "]"

View File

@ -12,31 +12,36 @@ import Control.Monad.Identity
import Control.Monad.Either
import Data.Nat
import Data.Fin
import Data.Vect
%default total
a : {p, q : Nat} -> lt p q = True -> LT p q
a {p} {q} eq = ltReflectsLT p q eq
{- λA. λx. x : ∏ (A : Type) → A → A -}
test_id : Either String (Bool, List String)
test_id = typecheck (TLam (TLam (TVar 0 (a Refl))))
(TPi TType (TPi (TVar 0 (a Refl)) (TVar 1 (a Refl))))
test_id = typecheck (TLam (TLam (TVar 0)))
(TPi TType (TPi (TVar 0) (TVar 1)))
{- λA. λB. λf. λx. f x : ∏ (A : Type) ∏ (B : A → Type) ∏ (f : ∏ (x : A) B x) ∏ (x : A) B x -}
test_app : Either String (Bool, List String)
test_app = typecheck (TLam (TLam (TLam (TLam (TApp (TVar 1 (a Refl)) (TVar 0 (a Refl)))))))
test_app = typecheck (TLam (TLam (TLam (TLam (TApp (TVar 1) (TVar 0))))))
(TPi TType
(TPi (TPi (TVar 0 (a Refl)) TType)
(TPi (TPi (TVar 1 (a Refl)) (TApp (TVar 1 (a Refl)) (TVar 0 (a Refl))))
(TPi (TVar 2 (a Refl)) (TApp (TVar 2 (a Refl)) (TVar 0 (a Refl)))))))
(TPi (TPi (TVar 0) TType)
(TPi (TPi (TVar 1) (TApp (TVar 1) (TVar 0)))
(TPi (TVar 2) (TApp (TVar 2) (TVar 0))))))
{- λf. λx. f x ≃ λf. λx. (λy. f y) x -}
eta_test : Either String (Bool, List String)
eta_test = resolve action
where
term1 : Term 0 []
term1 = TLam (TLam (TApp (TVar 1) (TVar 0)))
term2 : Term 0 []
term2 = TLam (TLam (TApp (TLam (TApp (TVar 2) (TVar 0))) (TVar 0)))
action : PI Bool
action = do
x <- eval ctx0 (TLam (TLam (TApp (TVar 1 (a Refl)) (TVar 0 (a Refl)))))
y <- eval ctx0 (TLam (TLam (TApp (TLam (TApp (TVar 2 (a Refl)) (TVar 0 (a Refl)))) (TVar 0 (a Refl)))))
x <- eval ctx0 term1
y <- eval ctx0 term2
convert x y

View File

@ -9,22 +9,22 @@ import Data.Vect
mutual
public export
data Value : Type where
VType : Value
VGen : Nat -> Value
VApp : Value -> Value -> Value
VClos : Ctx n -> Term n -> Value
data Value : (tags : Vect n Nat) -> Type where
VType : Value v
VGen : Nat -> Value v
VApp : Value v -> Value v -> Value v
VClos : Ctx n v -> Term n v -> Value v
public export
Ctx : Index -> Type
Ctx i = Vect i Value
Ctx : Index -> Vect n Nat -> Type
Ctx i v = Vect i (Value v)
public export
ctx0 : Ctx 0
ctx0 : Ctx 0 v
ctx0 = []
public export
Show Value where
Show (Value v) where
show VType = "VType"
show (VGen i) = "VGen " ++ show i
show (VApp f x) = "VApp (" ++ show f ++ ") (" ++ show x ++ ")"