module V = Value module E = Eval exception Unequal (* todo, better exception *) let rec conv_tp (len : int) (v1 : V.value) (v2 : V.value) = match v1, v2 with | Type, Type -> () | T0, T0 -> () | T1, T1 -> () | TNat, TNat -> () | TBool, TBool -> () | Pi (a1, C (env1, b1)), Pi (a2, C (env2, b2)) (* fallthrough *) | Sg (a1, C (env1, b1)), Sg (a2, C (env2, b2)) -> conv_tp len a1 a2; let fresh = V.Stuck (V.Var (V.Lvl len), a1) in conv_tp (len+1) (E.eval (fresh :: env1) b1) (E.eval (fresh :: env2) b2) | Stuck (s1, Type), Stuck (s2, Type) -> conv_stuck len s1 s2 | _ -> raise Unequal and conv_tr (len : int) (ty : V.value) (v1 : V.value) (v2 : V.value) = match ty with | Type -> conv_tp len v1 v2 | T1 -> () (* unit η-law, this still requires evaluation :/ *) | Pi (a, C (env, b)) -> let fresh = V.Stuck (V.Var (V.Lvl len), a) in conv_tr (len+1) (E.eval (fresh :: env) b) (E.app v1 a) (E.app v2 a) | Sg (a, C (env, b)) -> let f1 = E.fst v1 in conv_tr len a f1 (E.fst v2); conv_tr len (E.eval (f1 :: env) b) (E.snd v1) (E.snd v2) | _ -> begin match v1, v2 with | Zero, Zero -> () | Suc n, Suc m -> conv_tr len ty n m | True, True -> () | False, False -> () | Stuck (s1, _), Stuck (s2, _) -> conv_stuck len s1 s2 | _ -> raise Unequal end and conv_stuck (len : int) (s1 : V.stuck) (s2 : V.stuck) = match s1, s2 with | Var (Lvl i), Var (Lvl j) -> if i == j then () else raise Unequal | Fst p1, Fst p2 -> conv_stuck len p1 p2 | Snd p1, Snd p2 -> conv_stuck len p1 p2 | App (f1, x1, ty1), App (f2, x2, ty2) -> begin conv_stuck len f1 f2; conv_tp len ty1 ty2; conv_tr len ty1 x1 x2 end | _ -> raise Unequal