created complete grammar
This commit is contained in:
commit
9fbb930c38
32
hm.cf
Normal file
32
hm.cf
Normal file
|
@ -0,0 +1,32 @@
|
|||
layout toplevel ;
|
||||
|
||||
entrypoints [Def], Exp ;
|
||||
|
||||
token Id ((letter|digit|'_'|'['|']')+) ;
|
||||
|
||||
comment "--" ;
|
||||
comment "{-" "-}" ;
|
||||
|
||||
TypeDef. Def ::= "type" TypeSig1 "|" [Decl] ;
|
||||
VarDef. Def ::= Id ":" TypeSig ":=" Exp ;
|
||||
separator Def ";" ;
|
||||
|
||||
Decl. Decl ::= Id ":" TypeSig ;
|
||||
separator nonempty Decl "|" ;
|
||||
|
||||
TypeFun. TypeSig ::= TypeSig1 "→" TypeSig ;
|
||||
TypeApp. TypeSig1 ::= Id [TypeSig2] ;
|
||||
TypeVar. TypeSig2 ::= Id ;
|
||||
coercions TypeSig 2;
|
||||
|
||||
separator nonempty TypeSig2 "" ;
|
||||
|
||||
ExpTyped. Exp ::= Exp1 ":" TypeSig ;
|
||||
ExpAbs. Exp1 ::= "λ" [Id] "." Exp2 ;
|
||||
ExpApp. Exp2 ::= Exp3 [Exp3] ;
|
||||
ExpVar. Exp3 ::= Id ;
|
||||
|
||||
separator nonempty Exp3 "" ;
|
||||
coercions Exp 3;
|
||||
|
||||
separator nonempty Id "" ;
|
59
test
Normal file
59
test
Normal file
|
@ -0,0 +1,59 @@
|
|||
-- no pattern matching, instead a recursor is given based on your inductive definition
|
||||
-- for example: the following
|
||||
|
||||
type List A
|
||||
| nil : List A
|
||||
| cons : A → List A → List A
|
||||
|
||||
-- will bring the following into scope
|
||||
-- rec[List] : B → (A → B → B) → List A → B
|
||||
|
||||
-- map could then be written as
|
||||
|
||||
map : (A → B) → List A → List B
|
||||
:= rec[List] nil (λx xs. cons (f x) xs)
|
||||
|
||||
-- one could then define the naturals as follows
|
||||
|
||||
type Nat
|
||||
| zero : Nat
|
||||
| succ : Nat → Nat
|
||||
|
||||
-- defining addition as
|
||||
|
||||
add : Nat → Nat → Nat
|
||||
:= rec[Nat] (λx. x) (λn f. succ (f n))
|
||||
|
||||
-- since | rec[Nat] : B → (Nat → B → B) → Nat → B
|
||||
-- which generalizes to | rec[Nat] : (Nat → Nat) → (Nat → (Nat → Nat) → (Nat → Nat)) → Nat → Nat → Nat
|
||||
-- ^ adding 0 ^ recursively adding one more ^ resulting addition type
|
||||
|
||||
-- id is used to not add anything, the second function takes the last addition function and adds a layer
|
||||
-- of succ onto it, this way it generates a function for adding the right amount.
|
||||
|
||||
-- multiplication is defined similairly
|
||||
|
||||
mul : Nat → Nat → Nat
|
||||
:= rec[Nat] (λx. zero) (λn f. add n (f n))
|
||||
|
||||
-- here's an example of a simpler type
|
||||
|
||||
type Bool
|
||||
| true : Bool
|
||||
| false : Bool
|
||||
|
||||
not : Bool → Bool
|
||||
:= rec[Bool] false true
|
||||
|
||||
-- now, let's look at a bit more interesting example
|
||||
|
||||
type Expr
|
||||
| num : Nat
|
||||
| add : Expr Expr
|
||||
| mul : Expr Expr
|
||||
|
||||
-- this generates the following recursor
|
||||
-- rec[Expr] : (Nat → B) → (B → B → B) → (B → B → B) → Expr → B
|
||||
|
||||
eval : Expr → Nat
|
||||
:= rec[Expr] (λx. x) add mul
|
Loading…
Reference in New Issue
Block a user