created complete grammar

master
Rachel Lambda Samuelsson 2022-01-20 21:05:25 +01:00
commit 9fbb930c38
2 changed files with 91 additions and 0 deletions

32
hm.cf 100644
View File

@ -0,0 +1,32 @@
layout toplevel ;
entrypoints [Def], Exp ;
token Id ((letter|digit|'_'|'['|']')+) ;
comment "--" ;
comment "{-" "-}" ;
TypeDef. Def ::= "type" TypeSig1 "|" [Decl] ;
VarDef. Def ::= Id ":" TypeSig ":=" Exp ;
separator Def ";" ;
Decl. Decl ::= Id ":" TypeSig ;
separator nonempty Decl "|" ;
TypeFun. TypeSig ::= TypeSig1 "" TypeSig ;
TypeApp. TypeSig1 ::= Id [TypeSig2] ;
TypeVar. TypeSig2 ::= Id ;
coercions TypeSig 2;
separator nonempty TypeSig2 "" ;
ExpTyped. Exp ::= Exp1 ":" TypeSig ;
ExpAbs. Exp1 ::= "λ" [Id] "." Exp2 ;
ExpApp. Exp2 ::= Exp3 [Exp3] ;
ExpVar. Exp3 ::= Id ;
separator nonempty Exp3 "" ;
coercions Exp 3;
separator nonempty Id "" ;

59
test 100644
View File

@ -0,0 +1,59 @@
-- no pattern matching, instead a recursor is given based on your inductive definition
-- for example: the following
type List A
| nil : List A
| cons : A → List A → List A
-- will bring the following into scope
-- rec[List] : B → (A → B → B) → List A → B
-- map could then be written as
map : (A → B) → List A → List B
:= rec[List] nil (λx xs. cons (f x) xs)
-- one could then define the naturals as follows
type Nat
| zero : Nat
| succ : Nat → Nat
-- defining addition as
add : Nat → Nat → Nat
:= rec[Nat] (λx. x) (λn f. succ (f n))
-- since | rec[Nat] : B → (Nat → B → B) → Nat → B
-- which generalizes to | rec[Nat] : (Nat → Nat) → (Nat → (Nat → Nat) → (Nat → Nat)) → Nat → Nat → Nat
-- ^ adding 0 ^ recursively adding one more ^ resulting addition type
-- id is used to not add anything, the second function takes the last addition function and adds a layer
-- of succ onto it, this way it generates a function for adding the right amount.
-- multiplication is defined similairly
mul : Nat → Nat → Nat
:= rec[Nat] (λx. zero) (λn f. add n (f n))
-- here's an example of a simpler type
type Bool
| true : Bool
| false : Bool
not : Bool → Bool
:= rec[Bool] false true
-- now, let's look at a bit more interesting example
type Expr
| num : Nat
| add : Expr Expr
| mul : Expr Expr
-- this generates the following recursor
-- rec[Expr] : (Nat → B) → (B → B → B) → (B → B → B) → Expr → B
eval : Expr → Nat
:= rec[Expr] (λx. x) add mul