I did a lot

This commit is contained in:
Rachel Lambda Samuelsson 2022-01-24 20:58:00 +01:00
parent e7160485b6
commit 748d15d9f7
7 changed files with 338 additions and 2 deletions

6
TODO
View File

@ -9,4 +9,8 @@ terminates by forbidding corecursion (simply done by building a reference graph
3) Add Kind env and use it to have "type of types"
4) Then make the SECD machine good enough to execute it :)
4) Type annotated tree?
5) Make SECD machine good enough to execute it
6) Write backend for SECD machine code

View File

@ -27,6 +27,10 @@ library
, Hm.Lex
, Hm.Par
, Hm.Print
, TC
, Type
, Misc
, PostProcess
other-modules: Hm.ErrM
build-tool-depends: alex:alex >= 3.0, happy:happy >= 1.19.5

2
hm.cf
View File

@ -31,7 +31,7 @@ ExpAbs. Exp2 ::= "λ" [Id] "." Exp3 ;
ExpApp. Exp3 ::= Exp4 [Exp4] ;
ExpVar. Exp4 ::= Id ;
Assign. Assign ::= Ident "=" Exp1 ;
Assign. Assign ::= Id "=" Exp1 ;
separator nonempty Assign ";" ;
separator nonempty Exp4 "" ;

23
src/Misc.hs Normal file
View File

@ -0,0 +1,23 @@
module Misc where
import Data.Map (Map)
import Data.Set (Set)
import qualified Data.Set as S
import qualified Data.Map as M
import Data.Maybe (fromMaybe)
lookupDefault :: Ord k => a -> k -> Map k a -> a
lookupDefault d k m = fromMaybe d (M.lookup k m)
infixl \\
(\\) :: Ord a => Set a -> Set a -> Set a
(\\) = S.difference
infix 5 <~>
(<~>) :: (Traversable t, Applicative f) => (a -> f b) -> t a -> f (t b)
(<~>) = traverse
infixr 9 .:
(.:) :: (c -> d) -> (a -> b -> c) -> a -> b -> d
(.:) = (.) . (.)

101
src/PostProcess.hs Normal file
View File

@ -0,0 +1,101 @@
{-# LANGUAGE TupleSections, LambdaCase, OverloadedStrings #-}
module PostProcess where
import Control.Monad.State hiding (guard)
import Control.Monad.Except hiding (guard)
import Data.Map (Map)
import Data.Set (Set)
import Data.Text (Text)
import qualified Data.Map as M
import qualified Data.Set as S
import qualified Hm.Abs as H
import Type
import Misc
import TC
import Prelude hiding (map)
-- Type env for parsing type signatures
type Process = StateT (Set Id) Check
insertType :: Id -> Process ()
insertType i = get >>= put . S.insert i
runProcess :: Process a -> Set Id -> Check a
runProcess = (fst <$>) .: runStateT
postprocess :: [H.Def] -> Process [TL]
postprocess defs = addDef <~> defs >> defToTL <~> defs
addDef :: H.Def -> Process ()
addDef = \case
H.VarDef _ i t _ -> lift . addEnv i =<< typeSigToPolyT t -- the type checker will check this matches the exp
H.TypeDef _ t _ -> insertType =<< fst <$> typeSigToIdParams t
-- add type before typesig to id params
defToTL :: H.Def -> Process TL
defToTL (H.VarDef p i t e) = VarDef p i <$> typeSigToPolyT t <*> expToExp e
defToTL (H.TypeDef p t ds) = do
(i,_) <- typeSigToIdParams t
let (Id s) = i
monoT <- declTo2pl <~> ds
let env = M.fromList (map (\(i,m) -> (i, Mono m)) monoT)
-- check that all constructors construct correct type
mapM_ (guard (throwError (InvalidConstructor p)) . constructs i . snd) monoT
-- check that there are no unbound variables
guard (throwError (Unimplemented "Type parameters")) (free env == S.empty)
-- add recursor to env
tv <- lift fresh
let replace = \case {
TArr l r -> TArr (replace l) (replace r) ;
TCon i' -> if i' == i then tv else TCon i' ;
TVar i' -> TVar i' ;
}
recType <- lift . generalize . foldr TArr (tv `TArr` TCon i) . reverse . map (replace . snd) $ monoT
let env' = M.insert (Id ("rec[" <> s <> "]")) recType env
pure (TypeDef p i [] env')
typeSigToIdParams :: H.TypeSig -> Process (Id, [Id])
typeSigToIdParams = \case
H.TypeFun p _ _ -> throwError (InvalidTypeDecl p)
H.TypeApp {} -> throwError (Unimplemented "Type parameters")
H.TypeVar _ i -> pure (i, [])
typeSigToPolyT :: H.TypeSig -> Process PolyT
typeSigToPolyT t = typeSigToMonoT t >>= lift . generalize
typeSigToMonoT :: H.TypeSig -> Process MonoT
typeSigToMonoT = \case
H.TypeFun _ t1 t2 -> typeSigToMonoT t1 >>= (<$> typeSigToMonoT t2) . TArr
H.TypeApp {} -> throwError (Unimplemented "Type parameters")
H.TypeVar _ i -> get >>= \s -> pure $
if S.member i s
then TCon i
else TVar i
expToExp :: H.Exp -> Process Exp
expToExp = \case
H.ExpLet p as e -> Let p <$> assignTo2pl <~> as <*> expToExp e
H.ExpTyped p e t -> Typed p <$> expToExp e <*> typeSigToMonoT t
H.ExpAbs p is e -> Abs p is <$> expToExp e
H.ExpApp p e es -> App p <$> expToExp e <*> expToExp <~> es
H.ExpVar p i -> pure (Var p i)
declTo2pl :: H.Decl -> Process (Id, MonoT)
declTo2pl (H.Decl _ i t) = (i,) <$> typeSigToMonoT t
assignTo2pl :: H.Assign -> Process (Id, Exp)
assignTo2pl (H.Assign _ i e) = (i,) <$> expToExp e

137
src/TC.hs Normal file
View File

@ -0,0 +1,137 @@
{-# LANGUAGE LambdaCase, TypeSynonymInstances, FlexibleInstances #-}
module TC where
import Control.Monad.Reader hiding (guard)
import Control.Monad.State hiding (guard)
import Control.Monad.Except hiding (guard)
import Data.Set (Set)
import qualified Data.Set as S
import qualified Data.Map as M
import qualified Data.Text as T
import Type
import Misc
import Prelude hiding (map)
map :: Functor f => (a -> b) -> f a -> f b
map = fmap
runCheck :: CheckState -> Check a -> Either TypeError a
runCheck s = fst . (flip runState) s . runExceptT . getCheck
-- I'm still not quite sure how replicateM works, but in this instance it is
-- used to generate a list of strings "a", "b" ... "z", "aa", "ab" ... so on
--
-- Does it make sense to start with an empty state?
initialState :: CheckState
initialState = CS ([1..] >>= map (Id . T.pack) . flip replicateM ['a'..'z']) Nothing M.empty
getVars :: Check [Id]
getVars = variables <$> get
setVars :: [Id] -> Check ()
setVars ids = get >>= \s -> put (CS ids (lastPos s) (typeEnv s))
getEnv :: Check TypeEnv
getEnv = typeEnv <$> get
setEnv :: TypeEnv -> Check ()
setEnv env = get >>= \s -> put (CS (variables s) (lastPos s) env)
addEnv :: Id -> PolyT -> Check ()
addEnv i p = getEnv >>= setEnv . M.insert i p
guard :: Applicative f => f () -> Bool -> f ()
guard _ True = pure ()
guard f False = f
class Substitutable a where
apply :: Subst -> a -> a -- ^ apply a substitution
free :: a -> Set Id -- ^ free type variables
instance Substitutable MonoT where
apply s = \case
TCon i -> TCon i
TVar i -> lookupDefault (TVar i) i s
(t1 `TArr` t2) -> apply s t1 `TArr` apply s t2
free = \case
TCon{} -> S.empty
TVar i -> S.singleton i
(t1 `TArr` t2) -> free t1 <> free t2
instance Substitutable PolyT where
apply s = \case
Forall as t -> Forall as (apply (foldr M.delete s as) t)
Mono t -> Mono (apply s t)
free = \case
Forall as t -> free t \\ as
Mono t -> free t
instance Substitutable TypeEnv where
apply s = map (apply s)
free = free . M.elems
instance Substitutable a => Substitutable [a] where
apply = map . apply
free = foldMap free
-- This substution, and that one
(<&>) :: Subst -> Subst -> Subst
(<&>) s1 s2 = map (apply s1) s2 <> s1
emptySubst :: Subst
emptySubst = M.empty
unify :: MonoT -> MonoT -> Check Subst
unify (l1 `TArr` r1) (l2 `TArr` r2) = do
s1 <- unify l1 l2
s2 <- unify (apply s1 r1) (apply s1 r2)
pure (s1 <&> s2)
unify (TVar i) t = bind i t
unify t (TVar i) = bind i t
unify (TCon i1) (TCon i2) | i1 == i2 = pure emptySubst
unify t1 t2 = throwError (UnificationFailure t1 t2)
bind :: Id -> MonoT -> Check Subst
bind i1 (TVar i2) | i1 == i2 = pure emptySubst
bind i t | S.member i (free t) = throwError (InfiniteType i t)
| otherwise = pure (M.singleton i t)
fresh :: Check MonoT
fresh = do
(var:vars) <- getVars
setVars vars
pure (TVar var)
-- replace polymorphic type variables with monomorphic ones
instantiate :: PolyT -> Check MonoT
instantiate (Mono t) = pure t
instantiate (Forall is t) = foldM freshInsert emptySubst is >>= pure . (flip apply) t
where
freshInsert :: Subst -> Id -> Check Subst
freshInsert s k = (\a -> M.insert k a s) <$> fresh
generalize :: MonoT -> Check PolyT
generalize t = getEnv >>= \env -> pure (Forall (free t \\ free env) t)
lookupType :: Id -> Check MonoT
lookupType i = getEnv >>= \env ->
case M.lookup i env of
Nothing -> throwError (UnboundVariable i)
Just t -> instantiate t
infer :: Exp -> Check MonoT
infer = undefined
constructs :: Id -> MonoT -> Bool
constructs i (TArr _ t) = constructs i t
constructs i1 (TCon i2) = i1 == i2
constructs _ _ = False

67
src/Type.hs Normal file
View File

@ -0,0 +1,67 @@
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
module Type
( module Type
, Id(..)
) where
import Control.Monad.Reader
import Control.Monad.State
import Control.Monad.Except
import Data.Map (Map)
import Data.Set (Set)
import Data.Text (Text)
import Hm.Abs (Id(..))
data PolyT
= Forall (Set Id) MonoT -- ^ ∀ σ₁ σ₂ … σₙ. τ
| Mono MonoT -- ^ τ
deriving Show
infixr `TArr`
data MonoT
= TArr MonoT MonoT -- ^ function
| TVar Id -- ^ variable
| TCon Id -- ^ constant
deriving Show
type Pos = Maybe (Int, Int)
type TL = TL' Pos
data TL' a
= TypeDef a Id [Id] TypeEnv -- ^ name, parameters, constructors and recursor
| VarDef a Id PolyT Exp -- ^ name, declared type, expression
type Exp = Exp' Pos
data Exp' a
= Typed a Exp MonoT
| Let a [(Id, Exp)] Exp
| Abs a [Id] Exp
| App a Exp [Exp]
| Var a Id
data TypeError
= Oop -- ^ compiler error (oops)
| UnificationFailure MonoT MonoT
| InfiniteType Id MonoT
| UnboundVariable Id
| Unimplemented Text
| InvalidTypeDecl Pos
| InvalidConstructor Pos
deriving Show
type TypeEnv = Map Id PolyT
type Subst = Map Id MonoT
data CheckState = CS { variables :: [Id]
, lastPos :: Pos
, typeEnv :: TypeEnv
} deriving Show
newtype Check a = Check { getCheck :: ExceptT TypeError (State CheckState) a }
deriving (Functor, Applicative, Monad, MonadError TypeError, MonadState CheckState)
instance MonadFail Check where
fail _ = throwError Oop