move to constrain generation -> solving model. TODO: move code between modules, clean up

This commit is contained in:
Rachel Lambda Samuelsson 2022-01-28 13:46:42 +01:00
parent 413f7d3a21
commit 687b65cd4e
8 changed files with 184 additions and 166 deletions

View File

@ -9,8 +9,11 @@ import Data.Text (Text)
import qualified Data.Text.IO as T
import qualified Data.Set as S
import qualified Data.Map as M
import TC (initialState, runCheck, infer, generalize)
import Type (initialState, emptySubst, apply)
import TC (runInfer, infer, generalize)
import Solve (runSolve)
import PostProcess (expToExp, runProcess)
import Pretty
@ -26,12 +29,17 @@ inferType s = case pExp ts of
putStrLn "\nParse Successful!"
putStrLn (printTree tree)
let action = runProcess (expToExp tree) S.empty >>= infer >>= generalize . snd
let result = fst (runCheck initialState action)
let action = runProcess (expToExp tree) S.empty >>= infer
let result = runInfer M.empty action
case result of
Left err -> print err
Right res -> T.putStrLn (pretty res)
Right (t,_,c) -> case runSolve (emptySubst, c) of
Left err -> print err
Right subst -> case runInfer M.empty (generalize (apply subst t)) of
Left err -> print err
Right (t,_,_) -> T.putStrLn (pretty t)
where
ts = init (resolveLayout True (myLexer s))
showPosToken ((l,c),t) = concat [ show l, ":", show c, "\t", show t ]

View File

@ -32,6 +32,7 @@ library
, Misc
, PostProcess
, Pretty
, Solve
other-modules: Hm.ErrM
build-tool-depends: alex:alex >= 3.0, happy:happy >= 1.19.5

View File

@ -7,6 +7,8 @@ import qualified Data.Map as M
import Data.Maybe (fromMaybe)
import Prelude hiding (map)
lookupDefault :: Ord k => a -> k -> Map k a -> a
lookupDefault d k m = fromMaybe d (M.lookup k m)
@ -21,3 +23,6 @@ infix 5 <~>
infixr 9 .:
(.:) :: (c -> d) -> (a -> b -> c) -> a -> b -> d
(.:) = (.) . (.)
map :: Functor f => (a -> b) -> f a -> f b
map = fmap

View File

@ -19,12 +19,12 @@ import TC
import Prelude hiding (map)
-- Type env for parsing type signatures
type Process = StateT (Set Id) Check
type Process = StateT (Set Id) Infer
insertType :: Id -> Process ()
insertType i = get >>= put . S.insert i
runProcess :: Process a -> Set Id -> Check a
runProcess :: Process a -> Set Id -> Infer a
runProcess = (fst <$>) .: runStateT
postprocess :: [H.Def] -> Process [TL]
@ -38,10 +38,8 @@ addDef = \case
-- add type before typesig to id params
defToTL :: H.Def -> Process TL
defToTL (H.VarDef p i t e) = VarDef <$> lift (setPos p) <*> pure i <*> typeSigToPolyT t <*> expToExp e
defToTL (H.VarDef p i t e) = VarDef p i <$> typeSigToPolyT t <*> expToExp e
defToTL (H.TypeDef p t ds) = do
_ <- lift (setPos p)
(i,_) <- typeSigToIdParams t
let (Id s) = i
@ -72,7 +70,7 @@ defToTL (H.TypeDef p t ds) = do
typeSigToIdParams :: H.TypeSig -> Process (Id, [Id])
typeSigToIdParams = lift . setPos >=> \case
typeSigToIdParams = \case
H.TypeFun{} -> throwError InvalidTypeDecl
H.TypeApp{} -> throwError (Unimplemented "Type parameters")
H.TypeVar _ i -> pure (i, [])

View File

@ -8,7 +8,6 @@ import qualified Data.Map as M
import Type
import Data.List (sort)
import TC (initialState, apply, free)
class Pretty a where
pretty :: a -> Text
@ -39,7 +38,7 @@ instance Normalize MonoT where
normalize t = apply (goS t) t
go :: MonoT -> [(Id, Id)]
go t = zip (sort (S.toList (free t))) (variables initialState)
go t = zip (sort (S.toList (free t))) initialState
goS :: MonoT -> Subst
goS = M.fromList . map (\(x,y) -> (x, TVar y)) . go

37
src/Solve.hs Normal file
View File

@ -0,0 +1,37 @@
{-# LANGUAGE LambdaCase #-}
module Solve where
import Control.Monad.Reader
import Control.Monad.Except
import qualified Data.Map as M
import qualified Data.Set as S
import Type
unify :: MonoT -> MonoT -> Solve Unifier
unify t1 t2 | t1 == t2 = pure emptyUnifier
unify (l1 `TArr` r1) (l2 `TArr` r2) = do
(s1,c1) <- unify l1 l2
(s2,c2) <- unify (apply s1 r1) (apply s1 r2)
pure (s1 <&> s2, c1 ++ c2)
unify (TVar i) t = bind i t
unify t (TVar i) = bind i t
unify t1 t2 = throwError (UnificationFailure t1 t2)
bind :: Id -> MonoT -> Solve Unifier
bind i1 (TVar i2) | i1 == i2 = pure emptyUnifier
bind i t | S.member i (free t) = throwError (InfiniteType i t)
| otherwise = pure (M.singleton i t, [])
solver :: Solve Subst
solver = ask >>= \case
(subst,[]) -> pure subst
(s0, (t1, t2) : cs) -> do
(s1, c1) <- unify t1 t2
local (const (s1 <&> s0, c1 ++ apply s1 cs)) solver
runSolve :: Unifier -> Either TypeError Subst
runSolve = runExcept . runReaderT (getSolve solver)

181
src/TC.hs
View File

@ -2,9 +2,9 @@
{-# LANGUAGE TupleSections, FlexibleInstances #-}
module TC where
import Control.Monad.Reader hiding (guard)
import Control.Monad.State hiding (guard)
import Control.Monad.Identity hiding (guard)
import Control.Monad.Except hiding (guard)
import Control.Monad.RWS hiding (guard)
import Data.Set (Set)
import qualified Data.Set as S
@ -17,129 +17,40 @@ import Misc
import Prelude hiding (map)
map :: Functor f => (a -> b) -> f a -> f b
map = fmap
runInfer :: TypeEnv -> Infer a -> Either TypeError (a, [Id], [Constraint])
runInfer r = runIdentity . runExceptT . (\i -> runRWST i r initialState) . getInfer
runCheck :: CheckState -> Check a -> (Either TypeError a, CheckState)
runCheck s = (flip runState) s . runExceptT . getCheck
-- I'm still not quite sure how replicateM works, but in this instance it is
-- used to generate a list of strings "a", "b" ... "z", "aa", "ab" ... so on
--
-- Does it make sense to start with an empty state?
initialState :: CheckState
initialState = CS ([1..] >>= map (Id . T.pack) . flip replicateM ['a'..'z']) Nothing M.empty
getVars :: Check [Id]
getVars = variables <$> get
setVars :: [Id] -> Check ()
setVars ids = get >>= \s -> put (CS ids (lastPos s) (typeEnv s))
getEnv :: Check TypeEnv
getEnv = typeEnv <$> get
setEnv :: TypeEnv -> Check ()
setEnv env = get >>= \s -> put (CS (variables s) (lastPos s) env)
addEnv :: Id -> PolyT -> Check ()
addEnv i p = getEnv >>= setEnv . M.insert i p
localEnv :: TypeEnv -> Check a -> Check a
localEnv e m = getEnv >>= \o -> setEnv e >> m >>= \r -> setEnv o >> pure r
localEnv' :: Check a -> Check a
localEnv' m = getEnv >>= \o -> m >>= \r -> setEnv o >> pure r
-- returns p again to allow chaining into lambdacase
setPos :: Positioned p => p -> Check p
setPos p = get >>= \s -> put (CS (variables s) (pos p) (typeEnv s)) >> pure p
localEnv :: Id -> PolyT -> Infer a -> Infer a
localEnv i t = local (M.insert i t)
guard :: Applicative f => f () -> Bool -> f ()
guard _ True = pure ()
guard f False = f
class Substitutable a where
apply :: Subst -> a -> a -- ^ apply a substitution
free :: a -> Set Id -- ^ free type variables
uni :: MonoT -> MonoT -> Infer ()
uni t1 t2 = tell [(t1, t2)]
instance Substitutable MonoT where
apply s = \case
TCon i -> TCon i
TVar i -> lookupDefault (TVar i) i s
(t1 `TArr` t2) -> apply s t1 `TArr` apply s t2
free = \case
TCon{} -> S.empty
TVar i -> S.singleton i
(t1 `TArr` t2) -> free t1 <> free t2
instance Substitutable PolyT where
apply s = \case
Forall as t -> Forall as (apply (foldr M.delete s as) t)
Mono t -> Mono (apply s t)
free = \case
Forall as t -> free t \\ as
Mono t -> free t
instance Substitutable TypeEnv where
apply s = map (apply s)
free = free . M.elems
instance Substitutable a => Substitutable [a] where
apply = map . apply
free = foldMap free
applyEnv :: Subst -> Check ()
applyEnv s = getEnv >>= setEnv . apply s
-- This substution, and that one
(<&>) :: Subst -> Subst -> Subst
(<&>) s1 s2 = map (apply s1) s2 <> s1
emptySubst :: Subst
emptySubst = M.empty
unify :: MonoT -> MonoT -> Check Subst
unify (l1 `TArr` r1) (l2 `TArr` r2) = do
s1 <- unify l1 l2
s2 <- unify (apply s1 r1) (apply s1 r2)
pure (s1 <&> s2)
unify (TVar i) t = bind i t
unify t (TVar i) = bind i t
unify (TCon i1) (TCon i2) | i1 == i2 = pure emptySubst
unify t1 t2 = throwError (UnificationFailure t1 t2)
bind :: Id -> MonoT -> Check Subst
bind i1 (TVar i2) | i1 == i2 = pure emptySubst
bind i t | S.member i (free t) = throwError (InfiniteType i t)
| otherwise = pure (M.singleton i t)
fresh :: Check MonoT
fresh :: Infer MonoT
fresh = do
(var:vars) <- getVars
setVars vars
(var:vars) <- get
put vars
pure (TVar var)
-- replace polymorphic type variables with monomorphic ones
instantiate :: PolyT -> Check MonoT
instantiate :: PolyT -> Infer MonoT
instantiate (Mono t) = pure t
instantiate (Forall is t) = foldM freshInsert emptySubst is >>= pure . (flip apply) t
where
freshInsert :: Subst -> Id -> Check Subst
freshInsert :: Subst -> Id -> Infer Subst
freshInsert s k = (\a -> M.insert k a s) <$> fresh
generalize :: MonoT -> Check PolyT
generalize t = getEnv >>= \env -> pure (Forall (free t \\ free env) t)
generalize :: MonoT -> Infer PolyT
generalize t = ask >>= \env -> pure (Forall (free t \\ free env) t)
lookupType :: Id -> Check MonoT
lookupType i = getEnv >>= \env ->
lookupType :: Pos -> Id -> Infer MonoT
lookupType p i = ask >>= \env ->
case M.lookup i env of
Nothing -> throwError (UnboundVariable i)
Nothing -> throwError (UnboundVariable p i)
Just t -> instantiate t
constructs :: Id -> MonoT -> Bool
@ -147,52 +58,38 @@ constructs i (TArr _ t) = constructs i t
constructs i1 (TCon i2) = i1 == i2
constructs _ _ = False
infer :: Exp -> Check (Subst, MonoT)
infer = setPos >=> \case
infer :: Exp -> Infer MonoT
infer = \case
Var _ i -> (emptySubst,) <$> lookupType i
Var p i -> lookupType p i
Let _ [] e -> infer e
Let p ((i,e1):ies) e2 -> do
(s1, t1) <- infer e1
apply s1 <$> getEnv >>= \e -> localEnv e $ do
t1g <- generalize t1
addEnv i t1g
(s2, t2) <- infer (Let p ies e2)
pure (s2 <&> s1, t2)
t1 <- generalize =<< infer e1
localEnv i t1 (infer (Let p ies e2))
Abs _ [] e -> infer e
Abs p (i:is) e -> localEnv' $ do
Abs p (i:is) e -> do
tv <- fresh
addEnv i (Forall S.empty tv)
(s, t) <- infer (Abs p is e)
pure (s, apply s tv `TArr` t)
t <- localEnv i (Forall S.empty tv) (infer (Abs p is e))
pure (tv `TArr` t)
App _ e es -> go e (reverse es)
App p e es -> go p e (reverse es)
where
go :: Exp -> [Exp] -> Check (Subst, MonoT)
go _ [] = throwError Oop
go e1 [e2] = localEnv' $ do
(s1, t1) <- infer e1
applyEnv s1
(s2, t2) <- infer e2
go :: Pos -> Exp -> [Exp] -> Infer MonoT
go _ _ [] = throwError Oop
go p e1 [e2] = do
t1 <- infer e1
t2 <- infer e2
tv <- fresh
uni t1 (t2 `TArr` tv)
s3 <- unify (apply s2 t1) (t2 `TArr` tv)
pure (s3 <&> s2 <&> s1, apply s3 tv)
go e1 (e2:es) = localEnv' $ do
(s1, t1) <- go e1 es
applyEnv s1
(s2, t2) <- infer e2
pure tv
go p e1 (e2:es) = do
t1 <- go p e1 es
t2 <- infer e2
tv <- fresh
uni t1 (t2 `TArr` tv)
s3 <- unify (apply s2 t1) (t2 `TArr` tv)
pure (s3 <&> s2 <&> s1, apply s3 tv)
pure tv

View File

@ -5,17 +5,25 @@ module Type
, Id(..)
) where
import Control.Monad.RWS
import Control.Monad.Reader
import Control.Monad.State
import Control.Monad.Except
import Data.Map (Map)
import Data.Set (Set)
import Data.Text (Text)
import qualified Data.Set as S
import qualified Data.Map as M
import qualified Data.Text as T
import Hm.Abs (Id(..))
import qualified Hm.Abs as H (TypeSig'(..), TypeSig(..))
import qualified Hm.Abs as H (TypeSig'(..), TypeSig)
import Misc
import Prelude hiding (map)
data PolyT
= Forall (Set Id) MonoT -- ^ ∀ σ₁ σ₂ … σₙ. τ
@ -27,7 +35,7 @@ data MonoT
= TArr MonoT MonoT -- ^ function
| TVar Id -- ^ variable
| TCon Id -- ^ constant
deriving Show
deriving (Eq, Show)
type Pos = Maybe (Int, Int)
@ -69,11 +77,48 @@ instance Positioned H.TypeSig where
H.TypeApp p _ _ -> p
H.TypeVar p _ -> p
class Substitutable a where
apply :: Subst -> a -> a -- ^ apply a substitution
free :: a -> Set Id -- ^ free type variables
instance Substitutable MonoT where
apply s = \case
TCon i -> TCon i
TVar i -> lookupDefault (TVar i) i s
(t1 `TArr` t2) -> apply s t1 `TArr` apply s t2
free = \case
TCon{} -> S.empty
TVar i -> S.singleton i
(t1 `TArr` t2) -> free t1 <> free t2
instance Substitutable PolyT where
apply s = \case
Forall as t -> Forall as (apply (foldr M.delete s as) t)
Mono t -> Mono (apply s t)
free = \case
Forall as t -> free t \\ as
Mono t -> free t
instance Substitutable TypeEnv where
apply s = map (apply s)
free = free . M.elems
instance Substitutable a => Substitutable [a] where
apply = map . apply
free = foldMap free
instance (Substitutable a, Substitutable b) => Substitutable (a, b) where
apply s (a, b) = (apply s a, apply s b)
free (a, b) = free a <> free b
data TypeError
= Oop -- ^ compiler error (oops)
| UnificationFailure MonoT MonoT
| InfiniteType Id MonoT
| UnboundVariable Id
| UnboundVariable Pos Id
| Unimplemented Text
| InvalidTypeDecl
| InvalidConstructor
@ -84,13 +129,41 @@ type TypeEnv = Map Id PolyT
type Subst = Map Id MonoT
data CheckState = CS { variables :: [Id]
, lastPos :: Pos
, typeEnv :: TypeEnv
} deriving Show
emptySubst :: Subst
emptySubst = M.empty
newtype Check a = Check { getCheck :: ExceptT TypeError (State CheckState) a }
deriving (Functor, Applicative, Monad, MonadError TypeError, MonadState CheckState)
-- This substution, and that one
(<&>) :: Subst -> Subst -> Subst
(<&>) s1 s2 = map (apply s1) s2 <> s1
instance MonadFail Check where
type Constraint = (MonoT, MonoT)
type CheckState = [Id]
initialState :: [Id]
initialState = [1..] >>= map (Id . T.pack) . flip replicateM ['a'..'z']
newtype Infer a = Infer { getInfer :: RWST TypeEnv [Constraint] CheckState (Except TypeError) a }
deriving ( Functor, Applicative, Monad
, MonadError TypeError
, MonadState CheckState
, MonadReader TypeEnv
, MonadWriter [Constraint]
)
instance MonadFail Infer where
fail _ = throwError Oop
type Unifier = (Subst, [Constraint])
emptyUnifier :: Unifier
emptyUnifier = (emptySubst, [])
newtype Solve a = Solve { getSolve :: ReaderT Unifier (Except TypeError) a}
deriving ( Functor, Applicative, Monad
, MonadError TypeError
, MonadReader Unifier
)
instance MonadFail Solve where
fail _ = throwError Oop