Began initial work
This commit is contained in:
commit
f89494419b
1
.gitignore
vendored
Normal file
1
.gitignore
vendored
Normal file
|
@ -0,0 +1 @@
|
|||
_build
|
1
README.md
Normal file
1
README.md
Normal file
|
@ -0,0 +1 @@
|
|||
A formalization of CwFs in cubical agda using the 1Lab as a library.
|
15
cwfs.agda-lib
Normal file
15
cwfs.agda-lib
Normal file
|
@ -0,0 +1,15 @@
|
|||
name: cwfs
|
||||
include:
|
||||
src
|
||||
|
||||
flags:
|
||||
--cubical
|
||||
--no-load-primitives
|
||||
--postfix-projections
|
||||
--rewriting
|
||||
--guardedness
|
||||
--two-level
|
||||
-W noNoEquivWhenSplitting
|
||||
|
||||
depend:
|
||||
cubical-1lab
|
11
src/CwF.lagda.md
Normal file
11
src/CwF.lagda.md
Normal file
|
@ -0,0 +1,11 @@
|
|||
# Category with family
|
||||
|
||||
```
|
||||
module CwF where
|
||||
|
||||
open import Cat.Prelude
|
||||
```
|
||||
|
||||
```
|
||||
open import Fams
|
||||
```
|
40
src/Fams.lagda.md
Normal file
40
src/Fams.lagda.md
Normal file
|
@ -0,0 +1,40 @@
|
|||
```
|
||||
module Fams where
|
||||
|
||||
open import 1Lab.HLevel.Universe
|
||||
open import 1Lab.HLevel.Retracts
|
||||
open import 1Lab.Type.Sigma
|
||||
open import Cat.Prelude
|
||||
```
|
||||
Families of sets are sets
|
||||
```
|
||||
Fam-is-set : {o : _} → is-set (Σ[ B ∈ Set o ] (∣ B ∣ → Set o))
|
||||
Fam-is-set = Σ-is-hlevel 2 (λ x y → {! !}) {! !}
|
||||
```
|
||||
|
||||
Given a universe level there is a category $\mathcal Fam$ of the families of sets of that level.
|
||||
|
||||
```
|
||||
module _ where
|
||||
open Precategory
|
||||
|
||||
Fams : (o : _) → Precategory (lsuc o) o
|
||||
```
|
||||
Objects in $\mathcal Fam$ are pairs $B = (B^0,B^1)$ where $B^0$ is a set and $B^1$ is a family of sets indexed over $B^0$.
|
||||
```
|
||||
Fams o .Ob = Σ[ B ∈ Set o ] (∣ B ∣ → Set o)
|
||||
```
|
||||
A morphism between $B$ and $C$ in $\mathcal Fam$ is a pair of functions $(f^0,f^1)$ where $f^0$ is a function $f^0 : B^0 \to C^0$ and $f^1$ is a family of functions in $B^0$, $b : B^0 \mapsto f^1 : B^1(b) \to C^1(f^0(b))$.
|
||||
```
|
||||
Fams o .Hom B C = Σ[ f ∈ (∣ B .fst ∣ → ∣ C .fst ∣) ]
|
||||
((b : ∣ B .fst ∣) → ∣ B .snd b ∣ → ∣ C .snd (f b) ∣)
|
||||
```
|
||||
Remaning proofs are fairly trivial due to working with sets.
|
||||
```
|
||||
Fams o .Hom-set B C f g p q i j = {! !}
|
||||
Fams o .id = {! !}
|
||||
Fams o ._∘_ = {! !}
|
||||
Fams o .idr = {! !}
|
||||
Fams o .idl = {! !}
|
||||
Fams o .assoc = {! !}
|
||||
```
|
Loading…
Reference in New Issue
Block a user