Began initial work
This commit is contained in:
commit
f89494419b
1
.gitignore
vendored
Normal file
1
.gitignore
vendored
Normal file
|
@ -0,0 +1 @@
|
||||||
|
_build
|
1
README.md
Normal file
1
README.md
Normal file
|
@ -0,0 +1 @@
|
||||||
|
A formalization of CwFs in cubical agda using the 1Lab as a library.
|
15
cwfs.agda-lib
Normal file
15
cwfs.agda-lib
Normal file
|
@ -0,0 +1,15 @@
|
||||||
|
name: cwfs
|
||||||
|
include:
|
||||||
|
src
|
||||||
|
|
||||||
|
flags:
|
||||||
|
--cubical
|
||||||
|
--no-load-primitives
|
||||||
|
--postfix-projections
|
||||||
|
--rewriting
|
||||||
|
--guardedness
|
||||||
|
--two-level
|
||||||
|
-W noNoEquivWhenSplitting
|
||||||
|
|
||||||
|
depend:
|
||||||
|
cubical-1lab
|
11
src/CwF.lagda.md
Normal file
11
src/CwF.lagda.md
Normal file
|
@ -0,0 +1,11 @@
|
||||||
|
# Category with family
|
||||||
|
|
||||||
|
```
|
||||||
|
module CwF where
|
||||||
|
|
||||||
|
open import Cat.Prelude
|
||||||
|
```
|
||||||
|
|
||||||
|
```
|
||||||
|
open import Fams
|
||||||
|
```
|
40
src/Fams.lagda.md
Normal file
40
src/Fams.lagda.md
Normal file
|
@ -0,0 +1,40 @@
|
||||||
|
```
|
||||||
|
module Fams where
|
||||||
|
|
||||||
|
open import 1Lab.HLevel.Universe
|
||||||
|
open import 1Lab.HLevel.Retracts
|
||||||
|
open import 1Lab.Type.Sigma
|
||||||
|
open import Cat.Prelude
|
||||||
|
```
|
||||||
|
Families of sets are sets
|
||||||
|
```
|
||||||
|
Fam-is-set : {o : _} → is-set (Σ[ B ∈ Set o ] (∣ B ∣ → Set o))
|
||||||
|
Fam-is-set = Σ-is-hlevel 2 (λ x y → {! !}) {! !}
|
||||||
|
```
|
||||||
|
|
||||||
|
Given a universe level there is a category $\mathcal Fam$ of the families of sets of that level.
|
||||||
|
|
||||||
|
```
|
||||||
|
module _ where
|
||||||
|
open Precategory
|
||||||
|
|
||||||
|
Fams : (o : _) → Precategory (lsuc o) o
|
||||||
|
```
|
||||||
|
Objects in $\mathcal Fam$ are pairs $B = (B^0,B^1)$ where $B^0$ is a set and $B^1$ is a family of sets indexed over $B^0$.
|
||||||
|
```
|
||||||
|
Fams o .Ob = Σ[ B ∈ Set o ] (∣ B ∣ → Set o)
|
||||||
|
```
|
||||||
|
A morphism between $B$ and $C$ in $\mathcal Fam$ is a pair of functions $(f^0,f^1)$ where $f^0$ is a function $f^0 : B^0 \to C^0$ and $f^1$ is a family of functions in $B^0$, $b : B^0 \mapsto f^1 : B^1(b) \to C^1(f^0(b))$.
|
||||||
|
```
|
||||||
|
Fams o .Hom B C = Σ[ f ∈ (∣ B .fst ∣ → ∣ C .fst ∣) ]
|
||||||
|
((b : ∣ B .fst ∣) → ∣ B .snd b ∣ → ∣ C .snd (f b) ∣)
|
||||||
|
```
|
||||||
|
Remaning proofs are fairly trivial due to working with sets.
|
||||||
|
```
|
||||||
|
Fams o .Hom-set B C f g p q i j = {! !}
|
||||||
|
Fams o .id = {! !}
|
||||||
|
Fams o ._∘_ = {! !}
|
||||||
|
Fams o .idr = {! !}
|
||||||
|
Fams o .idl = {! !}
|
||||||
|
Fams o .assoc = {! !}
|
||||||
|
```
|
Loading…
Reference in New Issue
Block a user