complete definition of CwF. quite ugly, needs cleaning up.
This commit is contained in:
parent
7f068f1989
commit
aa6801bcfc
127
src/CwF.lagda.md
127
src/CwF.lagda.md
|
@ -18,11 +18,25 @@ references:
|
|||
url: http://link.springer.com/10.1007/978-3-540-78969-7_2
|
||||
page: 3-13
|
||||
language: en-GB
|
||||
- type: book-section
|
||||
id: hoffmann97
|
||||
author:
|
||||
- family: Martin Hoffmann
|
||||
issued:
|
||||
date-parts:
|
||||
- - 1997
|
||||
title: 'Syntax and semantics of dependent types'
|
||||
journal: "Extensional Constructs in Intensional Type Theory"
|
||||
volume: 4989
|
||||
url: https://doi.org/10.1007/978-1-4471-0963-1_2
|
||||
page: 13-54
|
||||
language: en-GB
|
||||
|
||||
citation-style: ieee
|
||||
---
|
||||
```
|
||||
open import Cat.Prelude
|
||||
open import Cat.Diagram.Terminal
|
||||
open import Fams
|
||||
|
||||
module CwF where
|
||||
|
@ -32,26 +46,119 @@ TODO: write more about what a CwF actually is and how one should think abut it.
|
|||
--->
|
||||
# Categories with families
|
||||
|
||||
A Category with families, written as CwF, is a category in which we can interpret the synax of a type theory. The objects of a CwF are contexts, and morphisms are a list of judgements, which capture the notions of substitution and weakening. For a more detailed introduction to CwFs see the introductory paper by Hoffmann. [@hoffmann97]
|
||||
|
||||
This file defines a CwF, as well as type formers for pi types, sigma types, identity types and universes. Here CwFs are defined as a GAT (generalised algebraic theory), as is presented in a paper by Abel, Coquand and Dybjer. [@abd2008]
|
||||
|
||||
A CwF is a category $\mathcal C$ equipped with a functor $\mathcal F : \mathcal C \to \mathcal Fam$, fufilling the rules of the GAT.
|
||||
A CwF is defined as a category $\mathcal C$ equipped with a contravariant functor $\mathcal F : \mathcal C^{op} \to \mathcal Fam$, fufilling the rules of the GAT.
|
||||
|
||||
```
|
||||
record CwF (o h f : Level) : Type (lsuc (o ⊔ h ⊔ f)) where
|
||||
record is-CwF {o h f : Level} (𝓒 : Precategory o h) : Type (lsuc (o ⊔ h ⊔ f)) where
|
||||
field
|
||||
𝓒 : Precategory o h
|
||||
𝓕 : Functor 𝓒 (Fams f)
|
||||
𝓕 : Functor (𝓒 ^op) (Fams f)
|
||||
```
|
||||
|
||||
Two functions, $Ty$ and $Tm$ are defined, respectively giving the set of syntactic types, and terms in a context.
|
||||
```
|
||||
open Precategory
|
||||
open Functor
|
||||
open Precategory 𝓒
|
||||
open Functor 𝓕
|
||||
|
||||
Ty : 𝓒 .Ob → Set f
|
||||
Ty Γ = 𝓕 .F₀ Γ .fst
|
||||
Ty : Ob → Set f
|
||||
Ty Γ = F₀ Γ .fst
|
||||
|
||||
Tr : (Γ : 𝓒 .Ob) → ∣ Ty Γ ∣ → Set f
|
||||
Tr Γ σ = 𝓕 .F₀ Γ .snd σ
|
||||
Tr : (Γ : Ob) → ∣ Ty Γ ∣ → Set f
|
||||
Tr Γ σ = F₀ Γ .snd σ
|
||||
```
|
||||
|
||||
Which support substitution in syntactic types and terms.
|
||||
```
|
||||
_⟦_⟧ : {Δ Γ : Ob} → ∣ Ty Γ ∣ → Hom Δ Γ → ∣ Ty Δ ∣
|
||||
A ⟦ γ ⟧ = F₁ γ .fst A
|
||||
|
||||
_[_] : {Δ Γ : Ob} {A : ∣ Ty Γ ∣} (a : ∣ Tr Γ A ∣)
|
||||
(γ : Hom Δ Γ) → ∣ Tr Δ (A ⟦ γ ⟧) ∣
|
||||
_[_] {_} {_} {A} a γ = F₁ γ .snd A a
|
||||
```
|
||||
|
||||
Being defined from a functor, these substitution operators play nicely with composed homs and identities.
|
||||
```
|
||||
⟦⟧-compose : {Δ Γ Θ : Ob} {γ : Hom Δ Γ} {δ : Hom Θ Δ} {A : ∣ Ty Γ ∣}
|
||||
→ A ⟦ γ ∘ δ ⟧ ≡ A ⟦ γ ⟧ ⟦ δ ⟧
|
||||
⟦⟧-compose {_} {_} {_} {γ} {δ} {A} i = F-∘ δ γ i .fst A
|
||||
|
||||
⟦⟧-id : {Γ : Ob} {A : ∣ Ty Γ ∣}
|
||||
→ A ⟦ id ⟧ ≡ A
|
||||
⟦⟧-id {Γ} {A} i = F-id i .fst A
|
||||
```
|
||||
|
||||
Because the type of the syntactic terms depends upon the syntactic types a path over paths is needed for stating that substitution is well behaved on terms.
|
||||
```
|
||||
[]-compose : {Δ Γ Θ : Ob} {γ : Hom Δ Γ} {δ : Hom Θ Δ} {A : ∣ Ty Γ ∣} {a : ∣ Tr Γ A ∣}
|
||||
→ PathP (λ i → ∣ Tr Θ (F-∘ δ γ i .fst A) ∣)
|
||||
(a [ γ ∘ δ ])
|
||||
(a [ γ ] [ δ ])
|
||||
[]-compose {_} {_} {_} {γ} {δ} {A} {a} i = F-∘ δ γ i .snd A a
|
||||
|
||||
[]-id : {Γ : Ob} {A : ∣ Ty Γ ∣} {a : ∣ Tr Γ A ∣}
|
||||
→ PathP (λ i → ∣ Tr Γ (F-id i .fst A) ∣) (a [ id ]) a
|
||||
[]-id {Γ} {A} {a} i = F-id i .snd A a
|
||||
```
|
||||
|
||||
A CwF has a terminal object representing the empty context.
|
||||
```
|
||||
field
|
||||
terminal : Terminal 𝓒
|
||||
```
|
||||
|
||||
For any context $\Gamma$ and $A \in Ty(\Gamma)$ there is a context $\Gamma,A$, extending $\Gamma$ by $A$.
|
||||
```
|
||||
_;_ : (Γ : Ob) → ∣ Ty Γ ∣ → Ob
|
||||
```
|
||||
|
||||
For every $\gamma : \Delta \to \Gamma$ and $a \in Tr(\Delta, A \llbracket \gamma \rrbracket)$ there is a weakened map $\langle \gamma , a \rangle : \Delta → \Gamma ; A$
|
||||
```
|
||||
⟨_,_⟩ : {Γ Δ : Ob} {A : ∣ Ty Γ ∣} (γ : Hom Δ Γ) (a : ∣ Tr Δ (A ⟦ γ ⟧) ∣ )
|
||||
→ Hom Δ (Γ ; A)
|
||||
```
|
||||
|
||||
For every context $\Gamma$ and $A ∈ Ty(\Gamma)$ there is a projection map $p_{\ \Gamma;A} : \Gamma;A → \Gamma$ and a syntactic term $q_{\ \Gamma;A} : Tr(\Gamma;A, A \llbracket p_{\ \Gamma;A}\rrbracket)$.
|
||||
|
||||
```
|
||||
p : {Γ : Ob} {A : ∣ Ty Γ ∣} → Hom (Γ ; A) Γ
|
||||
q : {Γ : Ob} {A : ∣ Ty Γ ∣} → ∣ Tr (Γ ; A) (A ⟦ p ⟧) ∣
|
||||
```
|
||||
|
||||
The meaning of $q$ might be a bit confusing, but it's essentialy an inverse of $p$, in the sense made precise below.
|
||||
```
|
||||
field
|
||||
pq-id : {Γ : Ob} {A : ∣ Ty Γ ∣} → ⟨ p , q ⟩ ≡ id {Γ ; A}
|
||||
```
|
||||
|
||||
There are some additional requirments placed upon $p$ and $q$ to ensure they play nice.
|
||||
```
|
||||
p-∘ : {Δ Γ : Ob} {γ : Hom Δ Γ} {A : ∣ Ty Γ ∣} (a : ∣ Tr Δ (A ⟦ γ ⟧) ∣)
|
||||
→ p ∘ ⟨ γ , a ⟩ ≡ γ
|
||||
```
|
||||
|
||||
The condition for q, depending on the condition for p holding, needs to be expressed with a rather annoying path over path.
|
||||
```
|
||||
q-∘-pathp : {Δ Γ : Ob} {γ : Hom Δ Γ} {A : ∣ Ty Γ ∣} (a : ∣ Tr Δ (A ⟦ γ ⟧) ∣)
|
||||
→ ∣ Tr Δ (F₁ ⟨ γ , a ⟩ .fst (F₁ p .fst A)) ∣ ≡ ∣ Tr Δ (F₁ γ .fst A) ∣
|
||||
q-∘-pathp {Δ} {Γ} {γ} {A} a =
|
||||
∣ Tr Δ (F₁ ⟨ γ , a ⟩ .fst (F₁ p .fst A)) ∣ ≡⟨ (λ i → ∣ Tr Δ (F-∘ ⟨ γ , a ⟩ p (~ i) .fst A) ∣) ⟩
|
||||
∣ Tr Δ (F₁ (p ∘ ⟨ γ , a ⟩) .fst A) ∣ ≡⟨ (λ i → ∣ Tr Δ (F₁ (p-∘ a i) .fst A) ∣) ⟩
|
||||
∣ Tr Δ (F₁ γ .fst A) ∣ ∎
|
||||
|
||||
field
|
||||
q-∘ : {Δ Γ : Ob} {γ : Hom Δ Γ} {A : ∣ Ty Γ ∣} {a : ∣ Tr Δ (A ⟦ γ ⟧) ∣}
|
||||
→ PathP (λ i → q-∘-pathp a i)
|
||||
(q [ ⟨ γ , a ⟩ ])
|
||||
a
|
||||
```
|
||||
|
||||
The weakening map is also required to play nice with composition.
|
||||
```
|
||||
⟨⟩-∘ : {Δ Γ Θ : Ob} {γ : Hom Γ Δ} {δ : Hom Δ Θ} {A : ∣ Ty Θ ∣} {a : ∣ Tr Δ (A ⟦ δ ⟧) ∣}
|
||||
→ ⟨ δ , a ⟩ ∘ γ
|
||||
≡ ⟨ δ ∘ γ , transport (λ i → ∣ Tr Γ (F-∘ γ δ (~ i) .fst A) ∣) (a [ γ ]) ⟩
|
||||
```
|
Loading…
Reference in New Issue
Block a user