complete definition of CwF. quite ugly, needs cleaning up.

This commit is contained in:
Rachel Lambda Samuelsson 2022-10-07 23:05:46 +02:00
parent 7f068f1989
commit aa6801bcfc

View File

@ -18,11 +18,25 @@ references:
url: http://link.springer.com/10.1007/978-3-540-78969-7_2
page: 3-13
language: en-GB
- type: book-section
id: hoffmann97
author:
- family: Martin Hoffmann
issued:
date-parts:
- - 1997
title: 'Syntax and semantics of dependent types'
journal: "Extensional Constructs in Intensional Type Theory"
volume: 4989
url: https://doi.org/10.1007/978-1-4471-0963-1_2
page: 13-54
language: en-GB
citation-style: ieee
---
```
open import Cat.Prelude
open import Cat.Diagram.Terminal
open import Fams
module CwF where
@ -32,26 +46,119 @@ TODO: write more about what a CwF actually is and how one should think abut it.
--->
# Categories with families
A Category with families, written as CwF, is a category in which we can interpret the synax of a type theory. The objects of a CwF are contexts, and morphisms are a list of judgements, which capture the notions of substitution and weakening. For a more detailed introduction to CwFs see the introductory paper by Hoffmann. [@hoffmann97]
This file defines a CwF, as well as type formers for pi types, sigma types, identity types and universes. Here CwFs are defined as a GAT (generalised algebraic theory), as is presented in a paper by Abel, Coquand and Dybjer. [@abd2008]
A CwF is a category $\mathcal C$ equipped with a functor $\mathcal F : \mathcal C \to \mathcal Fam$, fufilling the rules of the GAT.
A CwF is defined as a category $\mathcal C$ equipped with a contravariant functor $\mathcal F : \mathcal C^{op} \to \mathcal Fam$, fufilling the rules of the GAT.
```
record CwF (o h f : Level) : Type (lsuc (o ⊔ h ⊔ f)) where
record is-CwF {o h f : Level} (𝓒 : Precategory o h) : Type (lsuc (o ⊔ h ⊔ f)) where
field
𝓒 : Precategory o h
𝓕 : Functor 𝓒 (Fams f)
𝓕 : Functor (𝓒 ^op) (Fams f)
```
Two functions, $Ty$ and $Tm$ are defined, respectively giving the set of syntactic types, and terms in a context.
```
open Precategory
open Functor
open Precategory 𝓒
open Functor 𝓕
Ty : 𝓒 .Ob → Set f
Ty Γ = 𝓕 .F₀ Γ .fst
Ty : Ob → Set f
Ty Γ = F₀ Γ .fst
Tr : (Γ : 𝓒 .Ob) → Ty Γ → Set f
Tr Γ σ = 𝓕 .F₀ Γ .snd σ
Tr : (Γ : Ob) → Ty Γ → Set f
Tr Γ σ = F₀ Γ .snd σ
```
Which support substitution in syntactic types and terms.
```
_⟦_⟧ : {Δ Γ : Ob} → Ty Γ → Hom Δ Γ → Ty Δ
A ⟦ γ ⟧ = F₁ γ .fst A
_[_] : {Δ Γ : Ob} {A : Ty Γ } (a : Tr Γ A )
(γ : Hom Δ Γ) → Tr Δ (A ⟦ γ ⟧)
_[_] {_} {_} {A} a γ = F₁ γ .snd A a
```
Being defined from a functor, these substitution operators play nicely with composed homs and identities.
```
⟦⟧-compose : {Δ Γ Θ : Ob} {γ : Hom Δ Γ} {δ : Hom Θ Δ} {A : Ty Γ }
→ A ⟦ γ ∘ δ ⟧ ≡ A ⟦ γ ⟧ ⟦ δ ⟧
⟦⟧-compose {_} {_} {_} {γ} {δ} {A} i = F-∘ δ γ i .fst A
⟦⟧-id : {Γ : Ob} {A : Ty Γ }
→ A ⟦ id ⟧ ≡ A
⟦⟧-id {Γ} {A} i = F-id i .fst A
```
Because the type of the syntactic terms depends upon the syntactic types a path over paths is needed for stating that substitution is well behaved on terms.
```
[]-compose : {Δ Γ Θ : Ob} {γ : Hom Δ Γ} {δ : Hom Θ Δ} {A : Ty Γ } {a : Tr Γ A }
→ PathP (λ i → Tr Θ (F-∘ δ γ i .fst A) )
(a [ γ ∘ δ ])
(a [ γ ] [ δ ])
[]-compose {_} {_} {_} {γ} {δ} {A} {a} i = F-∘ δ γ i .snd A a
[]-id : {Γ : Ob} {A : Ty Γ } {a : Tr Γ A }
→ PathP (λ i → Tr Γ (F-id i .fst A) ) (a [ id ]) a
[]-id {Γ} {A} {a} i = F-id i .snd A a
```
A CwF has a terminal object representing the empty context.
```
field
terminal : Terminal 𝓒
```
For any context $\Gamma$ and $A \in Ty(\Gamma)$ there is a context $\Gamma,A$, extending $\Gamma$ by $A$.
```
_;_ : (Γ : Ob) → Ty Γ → Ob
```
For every $\gamma : \Delta \to \Gamma$ and $a \in Tr(\Delta, A \llbracket \gamma \rrbracket)$ there is a weakened map $\langle \gamma , a \rangle : \Delta → \Gamma ; A$
```
⟨_,_⟩ : {Γ Δ : Ob} {A : Ty Γ } (γ : Hom Δ Γ) (a : Tr Δ (A ⟦ γ ⟧) )
→ Hom Δ (Γ ; A)
```
For every context $\Gamma$ and $A ∈ Ty(\Gamma)$ there is a projection map $p_{\ \Gamma;A} : \Gamma;A → \Gamma$ and a syntactic term $q_{\ \Gamma;A} : Tr(\Gamma;A, A \llbracket p_{\ \Gamma;A}\rrbracket)$.
```
p : {Γ : Ob} {A : Ty Γ } → Hom (Γ ; A) Γ
q : {Γ : Ob} {A : Ty Γ } → Tr (Γ ; A) (A ⟦ p ⟧)
```
The meaning of $q$ might be a bit confusing, but it's essentialy an inverse of $p$, in the sense made precise below.
```
field
pq-id : {Γ : Ob} {A : Ty Γ } → ⟨ p , q ⟩ ≡ id {Γ ; A}
```
There are some additional requirments placed upon $p$ and $q$ to ensure they play nice.
```
p-∘ : {Δ Γ : Ob} {γ : Hom Δ Γ} {A : Ty Γ } (a : Tr Δ (A ⟦ γ ⟧) )
→ p ∘ ⟨ γ , a ⟩ ≡ γ
```
The condition for q, depending on the condition for p holding, needs to be expressed with a rather annoying path over path.
```
q-∘-pathp : {Δ Γ : Ob} {γ : Hom Δ Γ} {A : Ty Γ } (a : Tr Δ (A ⟦ γ ⟧) )
Tr Δ (F₁ ⟨ γ , a ⟩ .fst (F₁ p .fst A)) Tr Δ (F₁ γ .fst A)
q-∘-pathp {Δ} {Γ} {γ} {A} a =
Tr Δ (F₁ ⟨ γ , a ⟩ .fst (F₁ p .fst A)) ≡⟨ (λ i → Tr Δ (F-∘ ⟨ γ , a ⟩ p (~ i) .fst A) ) ⟩
Tr Δ (F₁ (p ∘ ⟨ γ , a ⟩) .fst A) ≡⟨ (λ i → Tr Δ (F₁ (p-∘ a i) .fst A) ) ⟩
Tr Δ (F₁ γ .fst A)
field
q-∘ : {Δ Γ : Ob} {γ : Hom Δ Γ} {A : Ty Γ } {a : Tr Δ (A ⟦ γ ⟧) }
→ PathP (λ i → q-∘-pathp a i)
(q [ ⟨ γ , a ⟩ ])
a
```
The weakening map is also required to play nice with composition.
```
⟨⟩-∘ : {Δ Γ Θ : Ob} {γ : Hom Γ Δ} {δ : Hom Δ Θ} {A : Ty Θ } {a : Tr Δ (A ⟦ δ ⟧) }
→ ⟨ δ , a ⟩ ∘ γ
≡ ⟨ δ ∘ γ , transport (λ i → Tr Γ (F-∘ γ δ (~ i) .fst A) ) (a [ γ ]) ⟩
```