painful pathp
This commit is contained in:
parent
6d3af73b9f
commit
9c5ae69cbd
|
@ -179,7 +179,7 @@ Further motivating the use of the word projection, pairing up the two projection
|
||||||
|
|
||||||
Lastly, it is required that the weakening map behaves as expected under composition.
|
Lastly, it is required that the weakening map behaves as expected under composition.
|
||||||
```
|
```
|
||||||
⟨⟩-∘ : {Δ Γ Θ : Ob} {γ : Hom Γ Δ} {δ : Hom Δ Θ} {A : ∣ Ty Θ ∣}
|
⟨⟩-∘ : {Δ Γ Θ : Ob} (γ : Hom Γ Δ) (δ : Hom Δ Θ) (A : ∣ Ty Θ ∣)
|
||||||
{a : ∣ Tr Δ (A ⟦ δ ⟧) ∣}
|
(a : ∣ Tr Δ (A ⟦ δ ⟧) ∣)
|
||||||
→ ⟨ δ , a ⟩ ∘ γ ≡ ⟨ δ ∘∘ γ , a [ γ ] ⟩
|
→ ⟨ δ , a ⟩ ∘ γ ≡ ⟨ δ ∘∘ γ , a [ γ ] ⟩
|
||||||
```
|
```
|
||||||
|
|
|
@ -57,11 +57,34 @@ Substitution must also be closed under all of these.
|
||||||
B ⟦ ⟨ id, x ⟩ ⟧ ⟦ γ ⟧
|
B ⟦ ⟨ id, x ⟩ ⟧ ⟦ γ ⟧
|
||||||
typeof app f x [ γ ]
|
typeof app f x [ γ ]
|
||||||
|
|
||||||
```
|
it would seem CwFs really don't want to be formalized :/
|
||||||
|
not enough definitional equalities...
|
||||||
|
|
||||||
|
```
|
||||||
|
app-subst-pathp : {Δ Γ : Ob} (γ : Hom Δ Γ) {A : ∣ Ty Γ ∣} {B : ∣ Ty (Γ ; A) ∣}
|
||||||
|
(f : ∣ Tr Γ (∏ A B) ∣) (x : ∣ Tr Γ A ∣)
|
||||||
|
→ B ⟦ ⟨ γ ∘∘ p , q ⟩ ⟧ ⟦ ⟨id, x [ γ ] ⟩ ⟧
|
||||||
|
≡ B ⟦ ⟨id, x ⟩ ⟧ ⟦ γ ⟧
|
||||||
|
app-subst-pathp {Δ} {Γ} γ {A} {B} f x =
|
||||||
|
B ⟦ ⟨ γ ∘∘ p , q ⟩ ⟧ ⟦ ⟨id, x [ γ ] ⟩ ⟧
|
||||||
|
≡˘⟨ ⟦⟧-compose ⟨ γ ∘∘ p , q ⟩ ⟨id, x [ γ ] ⟩ B ⟩
|
||||||
|
B ⟦ ⟨ γ ∘∘ p , q ⟩ ∘ ⟨id, x [ γ ] ⟩ ⟧
|
||||||
|
≡⟨⟩
|
||||||
|
B ⟦ ⟨ γ ∘ p , transport (λ i → ⟦⟧-tr-comp γ p A (~ i)) q ⟩ ∘ ⟨id, x [ γ ] ⟩ ⟧
|
||||||
|
≡⟨ (λ i → B ⟦ ⟨⟩-∘ ⟨id, x [ γ ] ⟩ (γ ∘ p) A (transport (λ i → ⟦⟧-tr-comp γ (p {Δ} {A ⟦ γ ⟧}) A (~ i)) q) i ⟧) ⟩
|
||||||
|
B ⟦ ⟨ γ ∘ p ∘∘ ⟨id, x [ γ ] ⟩ , transport (λ i → ⟦⟧-tr-comp γ (p {Δ} {A ⟦ γ ⟧}) A (~ i)) q [ ⟨id, x [ γ ] ⟩ ] ⟩ ⟧
|
||||||
|
≡⟨⟩
|
||||||
|
B ⟦ ⟨ (γ ∘ p) ∘ ⟨id, x [ γ ] ⟩ , transport (λ i → ⟦⟧-tr-comp (γ ∘ p) ⟨id, x [ γ ] ⟩ A (~ i))
|
||||||
|
(transport (λ j → ⟦⟧-tr-comp γ (p {Δ} {A ⟦ γ ⟧}) A (~ j)) q [ ⟨id, x [ γ ] ⟩ ]) ⟩ ⟧
|
||||||
|
≡⟨ {! !} ⟩
|
||||||
|
B ⟦ ⟨id, x ⟩ ⟧ ⟦ γ ⟧
|
||||||
|
∎
|
||||||
|
|
||||||
|
|
||||||
|
field
|
||||||
app-subst : {Δ Γ : Ob} (γ : Hom Δ Γ) {A : ∣ Ty Γ ∣} {B : ∣ Ty (Γ ; A) ∣}
|
app-subst : {Δ Γ : Ob} (γ : Hom Δ Γ) {A : ∣ Ty Γ ∣} {B : ∣ Ty (Γ ; A) ∣}
|
||||||
(f : ∣ Tr Γ (∏ A B) ∣) (x : ∣ Tr Γ A ∣)
|
(f : ∣ Tr Γ (∏ A B) ∣) (x : ∣ Tr Γ A ∣)
|
||||||
→ PathP {! !}
|
→ PathP (λ i → ∣ Tr Δ (app-subst-pathp γ f x (~ i)) ∣ )
|
||||||
(app f x [ γ ])
|
(app f x [ γ ])
|
||||||
(app (transport (λ i → ∣ Tr Δ (∏-subst γ A B i) ∣) (f [ γ ])) (x [ γ ]))
|
(app (transport (λ i → ∣ Tr Δ (∏-subst γ A B i) ∣) (f [ γ ])) (x [ γ ]))
|
||||||
```
|
```
|
||||||
|
|
Loading…
Reference in New Issue
Block a user