CwF: undo the last change, since f will be inferred from the functor
This commit is contained in:
parent
223b2e0447
commit
79d8c80446
|
@ -50,7 +50,7 @@ This file defines a CwF, without any particular type formers. Here CwFs are thou
|
||||||
A category $\mathcal C$ is said to be a CwF if there is a contravariant functor $\mathcal F : \mathcal C^{op} \to \mathcal Fam$, and it fufills the laws of the GAT.
|
A category $\mathcal C$ is said to be a CwF if there is a contravariant functor $\mathcal F : \mathcal C^{op} \to \mathcal Fam$, and it fufills the laws of the GAT.
|
||||||
|
|
||||||
```
|
```
|
||||||
record is-CwF {o h : _} (f : _) (𝓒 : Precategory o h) : Type (lsuc (o ⊔ h ⊔ f)) where
|
record is-CwF {o h f : _} (𝓒 : Precategory o h) : Type (lsuc (o ⊔ h ⊔ f)) where
|
||||||
field
|
field
|
||||||
𝓕 : Functor (𝓒 ^op) (Fams f)
|
𝓕 : Functor (𝓒 ^op) (Fams f)
|
||||||
```
|
```
|
||||||
|
|
Loading…
Reference in New Issue
Block a user