CwF: undo the last change, since f will be inferred from the functor

This commit is contained in:
Rachel Lambda Samuelsson 2022-10-08 13:20:24 +02:00
parent 223b2e0447
commit 79d8c80446

View File

@ -50,7 +50,7 @@ This file defines a CwF, without any particular type formers. Here CwFs are thou
A category $\mathcal C$ is said to be a CwF if there is a contravariant functor $\mathcal F : \mathcal C^{op} \to \mathcal Fam$, and it fufills the laws of the GAT. A category $\mathcal C$ is said to be a CwF if there is a contravariant functor $\mathcal F : \mathcal C^{op} \to \mathcal Fam$, and it fufills the laws of the GAT.
``` ```
record is-CwF {o h : _} (f : _) (𝓒 : Precategory o h) : Type (lsuc (o ⊔ h ⊔ f)) where record is-CwF {o h f : _} (𝓒 : Precategory o h) : Type (lsuc (o ⊔ h ⊔ f)) where
field field
𝓕 : Functor (𝓒 ^op) (Fams f) 𝓕 : Functor (𝓒 ^op) (Fams f)
``` ```