CwF: make level of Fams an explicit argument

This commit is contained in:
Rachel Lambda Samuelsson 2022-10-08 13:19:07 +02:00
parent d31b3ab50b
commit 223b2e0447

View File

@ -50,7 +50,7 @@ This file defines a CwF, without any particular type formers. Here CwFs are thou
A category $\mathcal C$ is said to be a CwF if there is a contravariant functor $\mathcal F : \mathcal C^{op} \to \mathcal Fam$, and it fufills the laws of the GAT. A category $\mathcal C$ is said to be a CwF if there is a contravariant functor $\mathcal F : \mathcal C^{op} \to \mathcal Fam$, and it fufills the laws of the GAT.
``` ```
record is-CwF {o h f : Level} (𝓒 : Precategory o h) : Type (lsuc (o ⊔ h ⊔ f)) where record is-CwF {o h : _} (f : _) (𝓒 : Precategory o h) : Type (lsuc (o ⊔ h ⊔ f)) where
field field
𝓕 : Functor (𝓒 ^op) (Fams f) 𝓕 : Functor (𝓒 ^op) (Fams f)
``` ```